提供各类精美PPT模板下载
当前位置:首页 > Word文档 >

镇乡2024年第一季度工作总结及下一步工作计划

  • XX年迎六一国旗下讲话稿

    “六一国际儿童节”,通常简称为“六一”、“六一儿童节”,它是属于儿童的重要节日,下面是小编收集整理的迎六一国旗下讲话稿,欢迎阅读参考!!XX年迎六一国旗下讲话稿一  老师们、同学们:大家好!弹去五月的风尘,我们即将迎来六月的时光 。本周日,一个快乐而有意义的节日——六一国际儿童节就将要到来。在这里,我谨代表学校预祝全体同学六一节快乐!在各科学习中获取好的成绩!同学们,“六一”是我们最快乐的节日,“六一”也最高兴的日子。因为:我们是家庭的宝贝,更是家庭的希望。我们能够快乐地成长,家庭就充满欢歌与笑语。我们是学校的学生,更是学校的希望。我们能够全面地发展,学校就充满生机与活力。我们是社会的未来,更是社会的希望。我们能够和谐地发展,社会就充满热情与友爱。我们是祖国的花朵,更是祖国的希望。我们能够茁壮地成长,祖国就充满美好与希望。希望同学们:文明、好学、自主、合作。学会学习、学会生活、学会做人、学会创造。像大人一样富有责任心、富有使命感,堂堂正正做人,认认真真做事,快快乐乐学习,健健康康成长。做一个理想远大、品行端庄、学习优良、身心健康的共产主义事业的接班人。 最后,预祝同学们六一节快乐!谢谢大家!

  • XX年六一儿童节国旗下讲话

    大家早上好!这个星期我们要过一个快乐而有意义的节日,你们知道是什么节日吗?“六一”国际儿童节是你们自己的节日,也是你们最快乐的日子。我们学校为了使同学们过得更加有意义,将在明天举行丰富多彩的活动。在这里,我预先向同学们致以节日的祝贺,同时,向辛勤培育你们成长的老师致以崇高的敬意。亲爱的小朋友们,你们肩负着复兴中华民族的历史使命,你们是肩负重担的一代,也是幸运的一代,你们面对的21世纪是全球化、信息化、知识经济崛起和人才竞争激烈的新时代,为了你们健康成长,我向你们提出几点希望:一、培养高尚的情操,国旗下讲话 树立远大的理想,塑造坚强的意志,自尊、自信、自主、自强,做合格的小公民。二、努力学习,奋发向上,学好各门功课,奠定个人成长的基础,增强为社会服务的本领。三、锻炼强健的体魄,不做温室的花朵,做搏击风雨的雄鹰。

  • XX年六一国旗下讲话稿

    老师,同学们:早上好!今天我讲话的题目是:把微笑献给自己“六一”儿童节那天,同学们一定收到很多礼物。今天,老师送给你们一份迟到的节日礼物——自己的微笑。曾经有一天,一个愁眉苦脸的男孩来到老师面前,伤感地说:“我是一个学习成绩不好,又没有人爱的孩子,活着可真没意思!”老师送给他一块石头,说:“明天早上,你拿这块石头到集市上去卖,但不是‘真卖’。无论别人出多少钱,都不能卖。”第二天,男孩蹲在市场的一个角落,面前摆着那块石头的价钱,果然有人向他打听那块石头,而且价钱愈出愈高。

  • XX年六一节国旗下讲话稿

    孩子们的盛大节日——六一国际儿童节,下面是小编收集整理的XX年六一节国旗下讲话稿,欢迎阅读参考!!XX年六一节国旗下讲话稿一  尊敬的各位领导、各位来宾、各位家长, 亲爱的老师们、亲爱的小朋友们:你们好!又到了星期一了,我们今天又站在了操场上,看我们的五星红旗冉冉升起,今天国旗下讲话的题目是《六一儿童节》,每年的6月1日是小朋友们最开心最快乐的时候,因为这一天是六一国际儿童节,是我们小朋友自己的节日,在这样的节日里,全世界小朋友都载歌载舞,都在和自己的小伙伴们一起欢度自己的节日。去年的六一儿童节,小朋友们还记得吗?我们在大舞台上我们一起唱歌跳舞,和你们的爸爸妈妈一起拍照片。那个时候的样子,你们还记得吗?时间过的真快,今年的六一儿童节又要到了,你们都准备好了吗?你们都准备了哪些节目来欢度节日的?(幼儿讨论)你们准备了这么多节目啊?老师都非常喜欢,这段时间,小朋友们辛苦了,为了表演出更多精彩的节目,小朋友流了许多的汗,吃了许多的苦,但是你们心里开心吗?老师非常期待能够看到你们的精彩表演,也在这里提前预祝全体小朋友们六一儿童节节日愉快。

  • XX年幼儿六一国旗下讲话稿

    欢庆“六一”儿童节!下面是小编收集整理的XX年幼儿六一国旗下讲话稿,欢迎阅读参考!!XX年幼儿六一国旗下讲话稿一  大家好,我是陈xx。今年六岁了,是大三班的小朋友。我很荣幸成为今天的升旗手。在幼儿园里,老师教会了我们感恩,教会了我们分享。老师就象妈妈一样关心爱护着我们。我们很幸福,很幸福!再过一周就是我们另一个妈妈的生日了——十月一日国庆节。我们要努力学习,锻炼身体,长大后建设祖国。小朋友,让我们一起大声祝福:祖国妈妈 生日快乐!敬爱的的老师,亲爱的小朋友们:大家好!我是大三班的xx。今天我能将鲜艳的五星红旗升上蓝天,感到无比的激动和自豪!我热爱运动,喜欢跑步,打乒乓球,跳绳,我可是班上的跳绳冠军哦!我还想对老师说:“老师,谢谢你们,你们辛苦了!是你们,在我遇到困难时,给我帮助;是你们,在我取得成绩时,给我鼓励;是你们,给了我一次又一次的锻炼的机会。今后,我要好好学习,天天向上!大家好!我是大三班的武xx,我今年七岁了。我爱我的幼儿园,爱我的老师,爱我的小伙伴。冬天已经悄悄的来临了,但是我不怕冷。我会拍球,现在我正在学跳绳,让我们一起动起来,赶走寒冷!我运动,我快乐!

  • 人教版高中历史必修2古代手工业的进步教案

    ①原因:封建制度的衰落(根本原因)【合作探究】清朝资本主义萌芽缓慢发展的原因。提示:①封建所有制的束缚。残酷的封建剥削使农民赤贫如洗,无力购买手工业品,限制了手工业产品的销路。封建地租的剥削率很高,又驱使地主和商人把他们的钱财用于购买土地,影响资本主义手工业的扩大再生产。②.封建政府的压制。清政府实行重农抑商的政策,采取了许多妨碍手工业生产和资本主义萌芽发展的措施,主要的有:实行闭关政策,严格限制海外贸易;在国内广设关卡,对商品征收重税;严格控制手工业的生产规模,如建立受官府控制的行会,制定行规限制雇工人数、产品品种、控制原料分配,限制产品销售的价格和地区范围等。②发展的表现:具有资本主义萌芽的部门和地区增多。(参见教材P10“学思之窗”)

  • 小学美术人教版一年级上册《第9课我在空中飞》教案

    一、组织教学:检查学生用具准备情况二、讲授新课:1、引入阶段:引趣,挂出宇宙飞船,宇航员,飞碟等图案师问:图上的物体是些什么?是用来干什么的?挂出两幅完整的太空,科幻作品。介绍简单的太空知识和人类深索太空奥秘的活动。

  • 小学数学人教版一年级上册《第几》说课稿

    一、教材简析及学情分析1.教材简析:本课是人教版1年级上册数学三单元第三节第一课时的内容。教材通过一幅旅游窗口购票图,让学生在数购票人次序的过程中感知自然数的另一个含义——序数。让学生在具体情境中理解几和第几的不同,能准确表达几和第几的意思。2.学情分析在学习本节课之前学生早已有了“第几”这个概念,在学校无论是站队,还是自己的学号,以及在课表中学生们都会接触到“第几”这个知识。但是对于“几和第几”学生们并没有认真区分过,本节课的重点就是让学生在深刻理解第几的基础上明白“几和第几”的区别。二、教学目标1.通过情境体验与参与,使学生感知自然数序数的含义,知道自然数除了可用来表示事物有多少外,还可以用来表示事物的次序。2.通过教学,培养学生遵守公共秩序,文明守纪的良好品德。3.让学生感受到生活中处处有数学,增强学习的乐趣和自信心。三、教材处理1.主题图的使用:由于学生很少有独自购票的经历,书中主题图与学生的生活实际情况不相符,大胆将主题图舍去,换成同学排排队、小动物排排队、圆片排排队三次活动,层层递进,突破教学重难点。

  • 北师大初中七年级数学上册第一章复习教案

    一、教学目标:1、会辨认基本几何体(直棱柱、圆柱、圆锥、球等)2、了解直棱柱、圆柱、圆锥的侧面展开图,能根据展开图判断和制作立体模型;3、能想象基本几何体的截面形状;4、会画基本几何体的三视图,会判断简单物体的三视图,能根据三视图描述几何体或实物原型;5、能从丰富的现实背景中抽象出空间几何体和基本平面图形,进一步认识点、线、面。6、获得一些研究问题的方法和经验,发展思维能力,加深理解相关的数学知识。7、体验数学知识之间的内在联系,初步形成对数学整体性的认识。教学重点:在具体的情境中,认识一些基本的几何体,并能描述这些几何体的特征。教学难点:是描述几何体的特征,对几何体进行分类。二、设疑自探1、梳理本章知识(一)生活中有哪些你熟悉的图形?举例说明.(二)你喜欢哪些几何体?举出一个生活中的物体,使它尽可能地包含不同的几何体.(三)用自己的语言说一说棱柱的特征?(直棱柱)

  • 人教版高中政治必修4意识的作用说课稿(一)

    1、课题引入:我设计以提问哲学到底是什么?的问题激发学生的阅读兴趣。我设计典型事例,通过学生讨论,教师总结的形式,并得出其实哲学就在我们身边。2、讲授新课:(35分钟)通过教材第一目的讲解,让学生明白,生活和学习中有许多蕴涵哲学道理的故事,表明哲学并不神秘总结并过渡:生活也离不开哲学,哲学可以是我正确看待自然、人生、和社会的发展,从而指导人们正确的认识和改造世界。整个过程将伴随着多媒体影像资料和生生对话讨论以提高学生的积极性。3、课堂反馈,知识迁移。最后对本科课进行小结,巩固重点难点,将本课的哲学知识迁移到与生活相关的例子,实现对知识的升华以及学生的再次创新;可使学生更深刻地理解重点和难点,为下一框学习做好准备。

  • 秋季学期第12周国旗下讲话稿

    老师们,同学们,大家好。首先,感谢大家对常规检查工作的关心和支持,现将我校学期初常规工作进行总结。这半学期,同学们都以良好的精神面貌去迎接新的学习生活,基本没有迟到现象。上下学时,见到老师和门卫爷爷能主动问好。着装规范整洁。初一年级红领巾佩戴情况较好。每天大课间的进退场上,初一同学真正做到快,静,齐,同时,在周一至周四做操时,也做的整齐有力。初二年级伏案静和中午练字做的很好。初三年级同学在常规问题上表现优秀,特别是在每天的早读时,声音洪亮起到了带头示范作用。提前来补作业同学较少。都能认真对待眼保健操和伏案静,将自行车排放整齐,包干区打扫认真干净。也没有同学在教室内吃早餐。大部分班级在功能室上课时排队安静整齐,可以提前到达指定地点,等待上课。大家总体上表现很优秀。然而,在某些方面,还需要同学们注意和提高。

  • 空间向量基本定理教学设计人教A版高中数学选择性必修第一册

    反思感悟用基底表示空间向量的解题策略1.空间中,任一向量都可以用一个基底表示,且只要基底确定,则表示形式是唯一的.2.用基底表示空间向量时,一般要结合图形,运用向量加法、减法的平行四边形法则、三角形法则,以及数乘向量的运算法则,逐步向基向量过渡,直至全部用基向量表示.3.在空间几何体中选择基底时,通常选取公共起点最集中的向量或关系最明确的向量作为基底,例如,在正方体、长方体、平行六面体、四面体中,一般选用从同一顶点出发的三条棱所对应的向量作为基底.例2.在棱长为2的正方体ABCD-A1B1C1D1中,E,F分别是DD1,BD的中点,点G在棱CD上,且CG=1/3 CD(1)证明:EF⊥B1C;(2)求EF与C1G所成角的余弦值.思路分析选择一个空间基底,将(EF) ?,(B_1 C) ?,(C_1 G) ?用基向量表示.(1)证明(EF) ?·(B_1 C) ?=0即可;(2)求(EF) ?与(C_1 G) ?夹角的余弦值即可.(1)证明:设(DA) ?=i,(DC) ?=j,(DD_1 ) ?=k,则{i,j,k}构成空间的一个正交基底.

  • 两点间的距离公式教学设计人教A版高中数学选择性必修第一册

    一、情境导学在一条笔直的公路同侧有两个大型小区,现在计划在公路上某处建一个公交站点C,以方便居住在两个小区住户的出行.如何选址能使站点到两个小区的距离之和最小?二、探究新知问题1.在数轴上已知两点A、B,如何求A、B两点间的距离?提示:|AB|=|xA-xB|.问题2:在平面直角坐标系中能否利用数轴上两点间的距离求出任意两点间距离?探究.当x1≠x2,y1≠y2时,|P1P2|=?请简单说明理由.提示:可以,构造直角三角形利用勾股定理求解.答案:如图,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即两点P1(x1,y1),P2(x2,y2)间的距离|P1P2|=?x2-x1?2+?y2-y1?2.你还能用其它方法证明这个公式吗?2.两点间距离公式的理解(1)此公式与两点的先后顺序无关,也就是说公式也可写成|P1P2|=?x2-x1?2+?y2-y1?2.(2)当直线P1P2平行于x轴时,|P1P2|=|x2-x1|.当直线P1P2平行于y轴时,|P1P2|=|y2-y1|.

  • 倾斜角与斜率教学设计人教A版高中数学选择性必修第一册

    (2)l的倾斜角为90°,即l平行于y轴,所以m+1=2m,得m=1.延伸探究1 本例条件不变,试求直线l的倾斜角为锐角时实数m的取值范围.解:由题意知(m"-" 1"-" 1)/(m+1"-" 2m)>0,解得1<m<2.延伸探究2 若将本例中的“N(2m,1)”改为“N(3m,2m)”,其他条件不变,结果如何?解:(1)由题意知(m"-" 1"-" 2m)/(m+1"-" 3m)=1,解得m=2.(2)由题意知m+1=3m,解得m=1/2.直线斜率的计算方法(1)判断两点的横坐标是否相等,若相等,则直线的斜率不存在.(2)若两点的横坐标不相等,则可以用斜率公式k=(y_2 "-" y_1)/(x_2 "-" x_1 )(其中x1≠x2)进行计算.金题典例 光线从点A(2,1)射到y轴上的点Q,经y轴反射后过点B(4,3),试求点Q的坐标及入射光线的斜率.解:(方法1)设Q(0,y),则由题意得kQA=-kQB.∵kQA=(1"-" y)/2,kQB=(3"-" y)/4,∴(1"-" y)/2=-(3"-" y)/4.解得y=5/3,即点Q的坐标为 0,5/3 ,∴k入=kQA=(1"-" y)/2=-1/3.(方法2)设Q(0,y),如图,点B(4,3)关于y轴的对称点为B'(-4,3), kAB'=(1"-" 3)/(2+4)=-1/3,由题意得,A、Q、B'三点共线.从而入射光线的斜率为kAQ=kAB'=-1/3.所以,有(1"-" y)/2=(1"-" 3)/(2+4),解得y=5/3,点Q的坐标为(0,5/3).

  • 两条平行线间的距离教学设计人教A版高中数学选择性必修第一册

    一、情境导学前面我们已经得到了两点间的距离公式,点到直线的距离公式,关于平面上的距离问题,两条直线间的距离也是值得研究的。思考1:立定跳远测量的什么距离?A.两平行线的距离 B.点到直线的距离 C. 点到点的距离二、探究新知思考2:已知两条平行直线l_1,l_2的方程,如何求l_1 〖与l〗_2间的距离?根据两条平行直线间距离的含义,在直线l_1上取任一点P(x_0,y_0 ),,点P(x_0,y_0 )到直线l_2的距离就是直线l_1与直线l_2间的距离,这样求两条平行线间的距离就转化为求点到直线的距离。两条平行直线间的距离1. 定义:夹在两平行线间的__________的长.公垂线段2. 图示: 3. 求法:转化为点到直线的距离.1.原点到直线x+2y-5=0的距离是( )A.2 B.3 C.2 D.5D [d=|-5|12+22=5.选D.]

  • 圆与圆的位置关系教学设计人教A版高中数学选择性必修第一册

    1.两圆x2+y2-1=0和x2+y2-4x+2y-4=0的位置关系是( )A.内切 B.相交 C.外切 D.外离解析:圆x2+y2-1=0表示以O1(0,0)点为圆心,以R1=1为半径的圆.圆x2+y2-4x+2y-4=0表示以O2(2,-1)点为圆心,以R2=3为半径的圆.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圆x2+y2-1=0和圆x2+y2-4x+2y-4=0相交.答案:B2.圆C1:x2+y2-12x-2y-13=0和圆C2:x2+y2+12x+16y-25=0的公共弦所在的直线方程是 . 解析:两圆的方程相减得公共弦所在的直线方程为4x+3y-2=0.答案:4x+3y-2=03.半径为6的圆与x轴相切,且与圆x2+(y-3)2=1内切,则此圆的方程为( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:设所求圆心坐标为(a,b),则|b|=6.由题意,得a2+(b-3)2=(6-1)2=25.若b=6,则a=±4;若b=-6,则a无解.故所求圆方程为(x±4)2+(y-6)2=36.答案:D4.若圆C1:x2+y2=4与圆C2:x2+y2-2ax+a2-1=0内切,则a等于 . 解析:圆C1的圆心C1(0,0),半径r1=2.圆C2可化为(x-a)2+y2=1,即圆心C2(a,0),半径r2=1,若两圆内切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知两个圆C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直线l:x+2y=0,求经过C1和C2的交点且和l相切的圆的方程.解:设所求圆的方程为x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圆心为 1/(1+λ),2/(1+λ) ,半径为1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圆x2+y2=4显然不符合题意,故所求圆的方程为x2+y2-x-2y=0.

  • 直线的点斜式方程教学设计人教A版高中数学选择性必修第一册

    【答案】B [由直线方程知直线斜率为3,令x=0可得在y轴上的截距为y=-3.故选B.]3.已知直线l1过点P(2,1)且与直线l2:y=x+1垂直,则l1的点斜式方程为________.【答案】y-1=-(x-2) [直线l2的斜率k2=1,故l1的斜率为-1,所以l1的点斜式方程为y-1=-(x-2).]4.已知两条直线y=ax-2和y=(2-a)x+1互相平行,则a=________. 【答案】1 [由题意得a=2-a,解得a=1.]5.无论k取何值,直线y-2=k(x+1)所过的定点是 . 【答案】(-1,2)6.直线l经过点P(3,4),它的倾斜角是直线y=3x+3的倾斜角的2倍,求直线l的点斜式方程.【答案】直线y=3x+3的斜率k=3,则其倾斜角α=60°,所以直线l的倾斜角为120°.以直线l的斜率为k′=tan 120°=-3.所以直线l的点斜式方程为y-4=-3(x-3).

  • 直线与圆的位置关系教学设计人教A版高中数学选择性必修第一册

    切线方程的求法1.求过圆上一点P(x0,y0)的圆的切线方程:先求切点与圆心连线的斜率k,则由垂直关系,切线斜率为-1/k,由点斜式方程可求得切线方程.若k=0或斜率不存在,则由图形可直接得切线方程为y=b或x=a.2.求过圆外一点P(x0,y0)的圆的切线时,常用几何方法求解设切线方程为y-y0=k(x-x0),即kx-y-kx0+y0=0,由圆心到直线的距离等于半径,可求得k,进而切线方程即可求出.但要注意,此时的切线有两条,若求出的k值只有一个时,则另一条切线的斜率一定不存在,可通过数形结合求出.例3 求直线l:3x+y-6=0被圆C:x2+y2-2y-4=0截得的弦长.思路分析:解法一求出直线与圆的交点坐标,解法二利用弦长公式,解法三利用几何法作出直角三角形,三种解法都可求得弦长.解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交点A(1,3),B(2,0),故弦AB的长为|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.设两交点A,B的坐标分别为A(x1,y1),B(x2,y2),则由根与系数的关系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的长为√10.解法三圆C:x2+y2-2y-4=0可化为x2+(y-1)2=5,其圆心坐标(0,1),半径r=√5,点(0,1)到直线l的距离为d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦长为("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦长|AB|=√10.

  • 直线的两点式方程教学设计人教A版高中数学选择性必修第一册

    解析:①过原点时,直线方程为y=-34x.②直线不过原点时,可设其方程为xa+ya=1,∴4a+-3a=1,∴a=1.∴直线方程为x+y-1=0.所以这样的直线有2条,选B.答案:B4.若点P(3,m)在过点A(2,-1),B(-3,4)的直线上,则m= . 解析:由两点式方程得,过A,B两点的直线方程为(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又点P(3,m)在直线AB上,所以3+m-1=0,得m=-2.答案:-2 5.直线ax+by=1(ab≠0)与两坐标轴围成的三角形的面积是 . 解析:直线在两坐标轴上的截距分别为1/a 与 1/b,所以直线与坐标轴围成的三角形面积为1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三个顶点A(0,4),B(-2,6),C(-8,0).(1)求三角形三边所在直线的方程;(2)求AC边上的垂直平分线的方程.解析(1)直线AB的方程为y-46-4=x-0-2-0,整理得x+y-4=0;直线BC的方程为y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直线AC的方程为x-8+y4=1,整理得x-2y+8=0.(2)线段AC的中点为D(-4,2),直线AC的斜率为12,则AC边上的垂直平分线的斜率为-2,所以AC边的垂直平分线的方程为y-2=-2(x+4),整理得2x+y+6=0.

  • 点到直线的距离公式教学设计人教A版高中数学选择性必修第一册

    4.已知△ABC三个顶点坐标A(-1,3),B(-3,0),C(1,2),求△ABC的面积S.【解析】由直线方程的两点式得直线BC的方程为 = ,即x-2y+3=0,由两点间距离公式得|BC|= ,点A到BC的距离为d,即为BC边上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面积为4.5.已知直线l经过点P(0,2),且A(1,1),B(-3,1)两点到直线l的距离相等,求直线l的方程.解:(方法一)∵点A(1,1)与B(-3,1)到y轴的距离不相等,∴直线l的斜率存在,设为k.又直线l在y轴上的截距为2,则直线l的方程为y=kx+2,即kx-y+2=0.由点A(1,1)与B(-3,1)到直线l的距离相等,∴直线l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)当直线l过线段AB的中点时,A,B两点到直线l的距离相等.∵AB的中点是(-1,1),又直线l过点P(0,2),∴直线l的方程是x-y+2=0.当直线l∥AB时,A,B两点到直线l的距离相等.∵直线AB的斜率为0,∴直线l的斜率为0,∴直线l的方程为y=2.综上所述,满足条件的直线l的方程是x-y+2=0或y=2.

上一页123...757677787980818283848586下一页
提供各类高质量Word文档下载,PPT模板下载,PPT背景图片下载,免费ppt模板下载,ppt特效动画,PPT模板免费下载,专注素材下载!