4.有8种不同的菜种,任选4种种在不同土质的4块地里,有 种不同的种法. 解析:将4块不同土质的地看作4个不同的位置,从8种不同的菜种中任选4种种在4块不同土质的地里,则本题即为从8个不同元素中任选4个元素的排列问题,所以不同的种法共有A_8^4 =8×7×6×5=1 680(种).答案:1 6805.用1、2、3、4、5、6、7这7个数字组成没有重复数字的四位数.(1)这些四位数中偶数有多少个?能被5整除的有多少个?(2)这些四位数中大于6 500的有多少个?解:(1)偶数的个位数只能是2、4、6,有A_3^1种排法,其他位上有A_6^3种排法,由分步乘法计数原理,知共有四位偶数A_3^1·A_6^3=360(个);能被5整除的数个位必须是5,故有A_6^3=120(个).(2)最高位上是7时大于6 500,有A_6^3种,最高位上是6时,百位上只能是7或5,故有2×A_5^2种.由分类加法计数原理知,这些四位数中大于6 500的共有A_6^3+2×A_5^2=160(个).
解析:因为减法和除法运算中交换两个数的位置对计算结果有影响,所以属于组合的有2个.答案:B2.若A_n^2=3C_(n"-" 1)^2,则n的值为( )A.4 B.5 C.6 D.7 解析:因为A_n^2=3C_(n"-" 1)^2,所以n(n-1)=(3"(" n"-" 1")(" n"-" 2")" )/2,解得n=6.故选C.答案:C 3.若集合A={a1,a2,a3,a4,a5},则集合A的子集中含有4个元素的子集共有 个. 解析:满足要求的子集中含有4个元素,由集合中元素的无序性,知其子集个数为C_5^4=5.答案:54.平面内有12个点,其中有4个点共线,此外再无任何3点共线,以这些点为顶点,可得多少个不同的三角形?解:(方法一)我们把从共线的4个点中取点的多少作为分类的标准:第1类,共线的4个点中有2个点作为三角形的顶点,共有C_4^2·C_8^1=48(个)不同的三角形;第2类,共线的4个点中有1个点作为三角形的顶点,共有C_4^1·C_8^2=112(个)不同的三角形;第3类,共线的4个点中没有点作为三角形的顶点,共有C_8^3=56(个)不同的三角形.由分类加法计数原理,不同的三角形共有48+112+56=216(个).(方法二 间接法)C_12^3-C_4^3=220-4=216(个).
3.某县农民月均收入服从N(500,202)的正态分布,则此县农民月均收入在500元到520元间人数的百分比约为 . 解析:因为月收入服从正态分布N(500,202),所以μ=500,σ=20,μ-σ=480,μ+σ=520.所以月均收入在[480,520]范围内的概率为0.683.由图像的对称性可知,此县农民月均收入在500到520元间人数的百分比约为34.15%.答案:34.15%4.某种零件的尺寸ξ(单位:cm)服从正态分布N(3,12),则不属于区间[1,5]这个尺寸范围的零件数约占总数的 . 解析:零件尺寸属于区间[μ-2σ,μ+2σ],即零件尺寸在[1,5]内取值的概率约为95.4%,故零件尺寸不属于区间[1,5]内的概率为1-95.4%=4.6%.答案:4.6%5. 设在一次数学考试中,某班学生的分数X~N(110,202),且知试卷满分150分,这个班的学生共54人,求这个班在这次数学考试中及格(即90分及90分以上)的人数和130分以上的人数.解:μ=110,σ=20,P(X≥90)=P(X-110≥-20)=P(X-μ≥-σ),∵P(X-μσ)≈2P(X-μ130)=P(X-110>20)=P(X-μ>σ),∴P(X-μσ)≈0.683+2P(X-μ>σ)=1,∴P(X-μ>σ)=0.158 5,即P(X>130)=0.158 5.∴54×0.158 5≈9(人),即130分以上的人数约为9人.
2.某小组有20名射手,其中1,2,3,4级射手分别为2,6,9,3名.又若选1,2,3,4级射手参加比赛,则在比赛中射中目标的概率分别为0.85,0.64,0.45,0.32,今随机选一人参加比赛,则该小组比赛中射中目标的概率为________. 【解析】设B表示“该小组比赛中射中目标”,Ai(i=1,2,3,4)表示“选i级射手参加比赛”,则P(B)= P(Ai)P(B|Ai)= 2/20×0.85+ 6/20 ×0.64+ 9/20×0.45+ 3/20×0.32=0.527 5.答案:0.527 53.两批相同的产品各有12件和10件,每批产品中各有1件废品,现在先从第1批产品中任取1件放入第2批中,然后从第2批中任取1件,则取到废品的概率为________. 【解析】设A表示“取到废品”,B表示“从第1批中取到废品”,有P(B)= 112,P(A|B)= 2/11 ,P(A| )= 1/11所以P(A)=P(B)P(A|B)+P( )P(A| )4.有一批同一型号的产品,已知其中由一厂生产的占 30%, 二厂生产的占 50% , 三厂生产的占 20%, 又知这三个厂的产品次品率分别为2% , 1%, 1%,问从这批产品中任取一件是次品的概率是多少?
(2)方法一:第一次取到一件不合格品,还剩下99件产品,其中有4件不合格品,95件合格品,于是第二次又取到不合格品的概率为4/99,由于这是一个条件概率,所以P(B|A)=4/99.方法二:根据条件概率的定义,先求出事件A,B同时发生的概率P(AB)=(C_5^2)/(C_100^2 )=1/495,所以P(B|A)=(P"(" AB")" )/(P"(" A")" )=(1/495)/(5/100)=4/99.6.在某次考试中,要从20道题中随机地抽出6道题,若考生至少答对其中的4道题即可通过;若至少答对其中5道题就获得优秀.已知某考生能答对其中10道题,并且知道他在这次考试中已经通过,求他获得优秀成绩的概率.解:设事件A为“该考生6道题全答对”,事件B为“该考生答对了其中5道题而另一道答错”,事件C为“该考生答对了其中4道题而另2道题答错”,事件D为“该考生在这次考试中通过”,事件E为“该考生在这次考试中获得优秀”,则A,B,C两两互斥,且D=A∪B∪C,E=A∪B,由古典概型的概率公式及加法公式可知P(D)=P(A∪B∪C)=P(A)+P(B)+P(C)=(C_10^6)/(C_20^6 )+(C_10^5 C_10^1)/(C_20^6 )+(C_10^4 C_10^2)/(C_20^6 )=(12" " 180)/(C_20^6 ),P(E|D)=P(A∪B|D)=P(A|D)+P(B|D)=(P"(" A")" )/(P"(" D")" )+(P"(" B")" )/(P"(" D")" )=(210/(C_20^6 ))/((12" " 180)/(C_20^6 ))+((2" " 520)/(C_20^6 ))/((12" " 180)/(C_20^6 ))=13/58,即所求概率为13/58.
本节课选自《2019人教A版高中数学选择性必修第三册》,第七章《随机变量及其分布列》,本节课主本节课主要学习成对数据的相关关系
本章主要学习统计方面知识,在之前学生已经对统计相关的知识做了大概的了解,本节学生要继续探讨的是变量之间的相关关系,变量之间有两类关系;函数关系和相关关系,它们的联系与区别;并了解线性相关及相关系数,为了解线性回归的基本思想和方法以及求回归直线的方程和相关性检验做准备。
课程目标 | 学科素养 |
A. 理解两个变量的相关关系的概念; B.会作散点图,并利用散点图判断两个变量之间是否具有相关关系; D.会根据相关系数判断两个变量的相关程度. | 1.数学抽象:相关关系 2.逻辑推理:相关系数公式推导 3.数学运算:求相关系数 4.数学建模:模型化思想
|
重点:相关关系的概念及利用散点图判断两个变量之间是否具有相关关系
难点:根据相关系数判断两个变量的相关程度
多媒体
教学过程 | 教学设计意图 核心素养目标 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
一、问题导学 我们知道,如果变量y是变量工的函数,那么由x就可以唯一确定y.然而,现实世界中还存在这样的情况:两个变量之间有关系,但密切程度又达不到函数关系的程度.例如,人的体重与身高存在关系,但由一个人的身高值并不能确定他的体重值,那么,该如何刻画这两个变量之间的关系呢?下面我们就来研究这个问题. 二、探究新知 我们知道,一个人的体重与他的身高有关系,一般而言,个子高的人往往体重值较大,个子矮的人往往体重值较小,但身高并不是决定体重的唯一因素,例如生活中的饮食习惯、体育锻炼、睡眠时间以及遗传因素等也是影响体重的重要因素,像这样,两个变量有关系,但又没有确切到可由其中的一个去精确地决定另一个的程度,这种关系称为相关关系(correlation). 两个变量具有相关关系的事例在现实中大量存在,例如: 1.子女身高y与父亲身高x之间的关系,一般来说,父亲的个子高,其子女的个子也会比较高;父亲个子矮,其子女的个子也会比较矮,但影响子女身高的因素,除父亲身高外还有其他因素,例如母亲身高、饮食结构、体育锻炼等,因此父亲身高又不能完全决定子女身高. 2.商品销售收人y与广告支出x之间的关系,一般来说,广告支出越多,商品销售收入越高,但广告支出并不是决定商品销售收入的唯一因素,商品销售收入还与商品质量、居民收入等因素有关。 3.空气污染指数y与汽车保有量x之间的关系,一般来说,汽车保有量增加,空气污染指数会上升,但汽车保有量并不是造成空气污染的唯一因素,气象条件、工业生产排放、居民生活和取暖、垃圾焚烧等都是影响空气污染指数的因素。 4.粮食亩产量y与施肥量x之间的关系,在一定范围内,施肥量越大,粮食亩产量就越高,但施肥量并不是决定粮食亩产量的唯一因索,粮食亩产量还要受到土壤质量、降水量、田间管理水平等因素的影响。 变量的相关关系 相关关系是一种不确定性关系;相关关系是相对于函数关系而言的. 像这样,两个变量有关系,但又没有确切到可由其中的一个去精确地决定另一个的程度,这种关系称为相关关系. 相关关系与函数关系的异同点
1.下列关系是相关关系的是________.(填序号) ①曲线上的点与该点的坐标之间的关系; ②苹果的产量与气候之间的关系; ③森林中同一种树木,其断面直径与高度之间的关系; ④学生与其学号之间的关系. ②③ 解析:利用相关关系的概念进行判断.①④中两个变量之间的关系是一种确定性关系,而②③中的两个变量之间的关系是不确定的,所以它们具有相关关系. 探究1:在对人体的脂肪的含量和年龄之间关系的研究中,科研人员获得了一些年龄和脂肪含量的简单随机样本数据,如表所示,表中每个编号下的年龄和脂肪含量数据都是对同一个体的观测结果,它们构成了成对数据。
根据以上数据,你能推新人体的脂肪含量与年龄之间存在怎样的关系吗? 成对样本数据都可用直角坐标系中的点表示出来,由这些点组成了统计图.我们我们把这样的统计图叫做散点图 由散点图可以发现,这些散点大致落在一条从左下角到右上角的直线附近,表明随年龄值的增加,相应的脂肪含量值呈现增高的趋势.这样,由成对样本数据的分布规律,我们可以推断脂肪含量变量和年龄变量之间存在着相关关系. 变量相关关系的分类 (1)正相关和负相关 如果从整体上看,当一个变量的值增加时,另一个变量的相应值也呈现增加的趋势, 我们就称这两个变量正相关.当一个变量的值增加时, 另一个变量的相应值也呈现减少的趋势,称这两个变量负相关. 正相关:根据样本数据所作得散点图中,若点散布在从左下角到右上角的区域。对于两个变量的这种相关关系,我们称之为正相关。 负相关:根据样本数据所作得散点图中,若点散布在从左上角到右下角的区域。对于两个变量的这种相关关系,我们称之为负相关。 ①线性相关:散点图是描述成对数据之间关系的一种直观方法.一般地,如果两个变量的取值呈现正相关或负相关,而且散点落在一一条直线附近,我们就称这两个变量线性相关; ②非线性相关:一般地,如果两个变量具有相关性,但不是线性相关,那么我们就称这两个变量非线性相关或曲线相关. 探究2.通过观察散点图中成对样本数据的分布规律,我们可以大致推断两个变量是否存在相关关系、是正相关还是负相关、是线性相关还是非线性相关等,散点图虽然直观,但无法确切地反映成对样本数据的相关程度,也就无法量化两个变量之间相关程度的大小.能否像引入平均值、方差等数字特征对单个变量数据进行分析那样,引入一个适当的“数字特征”,对成对样本数据的相关程度进行定量分析呢? 对于变量𝑥和变量𝑦,设经过随机抽样得到的成对数据为(𝑥1,𝑦1),(𝑥2,𝑦2),⋯,(𝑥𝑛,𝑦𝑛), 将数据以为零点进行平移,得到平移后的成对数据为: 绘制散点图为 这时的散点大多数分布在第一象限、第三象限,大多数散点的横、纵坐标同号,显然,这样的规律是由人体脂肪含量与年龄正相关所决定的。 探究3:根据上述分析,你能利用正相关变量和负相关变量的成对样本数据平移后星现的规律,构造一个度量成对样本数据是正相关还是负相关的数字特征吗? 根据散点图特征,初步构造统计量.利用散点的 横纵坐标是否同号,可以构造一个量 一般情形下,Lxy>0表明成对样本数据正相关; Lxy <0表明成对样本数据负相关. 问题1: Lxy的大小一定能度量出成对样本数据的相关程度吗? 我们发现, Lxy的大小与数据的度量单位有关,所以不能直接用它度量成对样本数据相关程度的大小. 在研究体重与身高之间的相关程度时,如果体重的单位不变,把身高单位由米改为厘米,单位的改变不会改变体重与身高之间的相关程度. 为了消除单位的影响,进一步做“标准化”处理为简单起见,把上述“标准化”处理后的成对数据分别记为 仿照Lxy的构造,可以得到 分别 样本相关系数r是一个描述成对样本数据的数字特征, 它的正负和绝对值的大小可以反映成对样本数据的变化特征: 当r>0时,称成对样本数据正相关;当其中一个数据的值变小时,另一个数据的值通常也变小;当其中一个数据的值变大时,另一个数据的值通常也变大。 当r<0时,称成对样本数据负相关;当其中一个数据的值变小时,另一个数据的值通常会变大:当其中一个数据的值变大时,另一个数据的值通常会变小。 样本相关系数 我们称r为变量x和变量y的样本相关系数. 样本相关系数r的取值范围为[-1,1],样本相关系数r的绝对值大小可以反映成对样本数据之间线性相关的程度: 当|r|越接近1时,成对样本数据的线性相关程度越强; 当|r|越接近0时,成对样本数据的线性相关程度越弱. 样本相关系数r有时也称样本线性相关系数,|r|刻画了样本点集中于某条直线的程度.当r=0 时,只表明成对样本数据间没有线性相关关系,但不排除它们之间有其他相关关系. 三、典例解析 例1.根据下表中脂肪含量和年龄的样本数据,推断两个变量是否线性相关,计算样本相关系数,并推断它们的相关程度.
参考数据: 解:先画出散点图,如右图所示观察散点图, 可以看出样本点都集中在一条直线附近, 由此推断脂肪含量和年龄线性相关. 由样本相关系数𝑟≈0.97,可以推断脂肪含量和年龄这两个变量正线性相关,且相关程度很强。脂肪含量与年龄变化趋势相同. 归纳总结 1.线性相关系数是从数值上来判断变量间的线性相关程度,是定量的方法.与散点图相比较,线性相关系数要精细得多,需要注意的是线性相关系数r的绝对值小,只是说明线性相关程度低,但不一定不相关,可能是非线性相关. 2.利用相关系数r来检验线性相关显著性水平时,通常与0.75作比较,若|r|>0.75,则线性相关较为显著,否则不显著. 例2. 有人收集了某城市居民年收入(所有居民在一年内收入的总和)与A商品销售额的10年数据,如表所示.画出散点图,判断成对样本数据是否线性相关,并通过样本相关系数推断居民年收入与A商品销售额的相关程度和变化趋势的异同.
解:从散点图看,A商品销售额与居民年收入的样本数据呈现线性相关关系. 例3.在某校高一年级中随机抽取25名男生,测得他们的身高、体重、臂展等数据,如下表所示. 解:通过计算得到体重与身高、臂展与身高的样本相关系数分别约为0.34和0.78,都为正相关.其中,臂展与身高的相关程度更高. 体重与身高、臂展与身高分别具有怎样的相关性? 跟踪训练1.由于往届高三年级数学学科的学习方式大都是“刷题——讲题——再刷题”的模式,效果不理想.某市一中的数学课堂教改采用了“记题型——刷题——检测效果”的模式,并记录了某学生的记题型时间t(单位:h)与检测效果y的数据如表所示.
据统计表明,y与t之间具有线性相关关系,请用相关系数r加以说明(若|r|≥0.75,则认为y与t有很强的线性相关关系,否则认为没有很强的线性相关关系). 参考公式及数据:相关系数r=,=4.3, (yi-)2=7.08,(ti-)(yi-)=14,≈14.08. 解:由题得==4, (ti-)2=9+4+1+0+1+4+9=28, 所以r==≈0.99>0.75,所以y与t有很强的线性相关关系. |
通过具体的问题情境,引发学生思考积极参与互动,说出自己见解。从而引入相关关系的概念,发展学生逻辑推理、数学运算、数学抽象和数学建模的核心素养。
通过问题分析,让学生掌握判断相关关系与函数关系的区别与联系。发展学生逻辑推理,直观想象、数学抽象和数学运算的核心素养。
通过具体的问题情境中的分析,深化对相关系数的理解。发展学生逻辑推理,直观想象、数学抽象和数学运算的核心素养。
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
三、达标检测 1.判断(正确的打“√”,错误的打“”). (1)变量之间只有函数关系,不存在相关关系.( ) (2)两个变量之间产生相关关系的原因受许多不确定的随机因素的影响.( ) (3)两个变量的相关系数越大,它们的相关程度越强.( ) (4)若相关系数r=0,则两变量x,y之间没有关系.( ) 答案:(1)(3)(4)错;(2)对 当堂达标 2.下列各图中所示的两个变量具有相关关系的是( ) A.(1)(2) B.(1)(3) C.(2)(4) D.(2)(3) D 解析:(1)为函数关系;(2)(3)为相关关系;(4)中,因为点分布得比较分散,两者之间无相关关系. 3.对变量x,y有观测数据(xi,yi)(i=1,2,3,…,10),得散点图1;对变量u,v有观测数据(ui,vi)(i=1,2,3,…,10),得散点图2,由这两个散点图可以断定( ) A.x与y正相关,u与v正相关 B.x与y正相关,u与v负相关 C.x与y负相关,u与v正相关 D.x与y负相关,u与v负相关 C 解析:由题图1可知,点散布在从左上角到右下角的区域,各点整体呈递减趋势,故x与y负相关; 由题图2可知,点散布在从左下角到右上角的区域,各点整体呈递增趋势,故u与v正相关. 4.在建立两个变量y与x的回归模型中,分别选择了4个不同模型,它们的相关系数r有如下四个选项,其中拟合得最好的模型为( ) A.模型1的相关系数r为0.75 B.模型2的相关系数r为0.55 C.模型3的相关系数r为0.25 D.模型4的相关系数r为0.90 D 解析:D中相关系数r的绝对值最接近1,相关性最强,故选D. 5.假设关于某种设备的使用年限x(单位:年)与所支出的维修费用y(单位:万元)有如下统计资料:
|
通过练习巩固本节所学知识,通过学生解决问题,发展学生的数学运算、逻辑推理、直观想象、数学建模的核心素养。
|
转载请注明出处!本文地址:
https://www.lfppt.com/worddetails_30353057.html1、该生学习态度端正 ,能够积极配合老师 ,善于调动课堂气氛。 能够积极完成老师布置的任务。学习劲头足,听课又专注 ,做事更认 真 ,你是同学们学习的榜样。但是,成绩只代表昨天,并不能说明你 明天就一定也很优秀。所以,每个人都应该把成绩当作自己腾飞的起 点。2、 你不爱说话 ,但勤奋好学,诚实可爱;你做事踏实、认真、为 人忠厚 ,是一个品行端正、有上进心、有良好的道德修养的好学生。在学习上,积极、主动,能按时完成老师布置的作业,经过努力 ,各 科成绩都有明显进步,你有较强的思维能力和学习领悟力,学习也有 计划性,但在老师看来,你的潜力还没有完全发挥出来,学习上还要有持久的恒心和顽强的毅力。
一是要把好正确导向。严格落实主体责任,逐条逐项细化任务,层层传导压力。要抓实思想引领,把理论学习贯穿始终,全身心投入主题教育当中;把理论学习、调查研究、推动发展、检视整改等有机融合、一体推进;坚持学思用贯通、知信行统一,努力在以学铸魂、以学增智、以学正风、以学促干方面取得实实在在的成效。更加深刻领会到******主义思想的科学体系、核心要义、实践要求,进一步坚定了理想信念,锤炼了政治品格,增强了工作本领,要自觉运用的创新理论研究新情况、解决新问题,为西北矿业高质量发展作出贡献。二是要加强应急处事能力。认真组织开展好各类理论宣讲和文化活动,发挥好基层ys*t阵地作用,加强分析预警和应对处置能力,提高发现力、研判力、处置力,起到稳定和引导作用。要坚决唱响主旋律,为“打造陕甘片区高质量发展标杆矿井”、建设“七个一流”能源集团和“精优智特”新淄矿营造良好的舆论氛围。三是加强舆情的搜集及应对。加强职工群众热点问题的舆论引导,做好舆情的收集、分析和研判,把握时、度、效,重视网上和网下舆情应对。
二是深耕意识形态。加强意识形态、网络舆论阵地建设和管理,把握重大时间节点,科学分析研判意识形态领域情况,旗帜鲜明反对和抵制各种错误观点,有效防范处置风险隐患。积极响应和高效落实上级党委的决策部署,确保执行不偏向、不变通、不走样。(二)全面深化党的组织建设,锻造坚强有力的基层党组织。一是提高基层党组织建设力量。压实党建责任,从政治高度检视分析党建工作短板弱项,有针对性提出改进工作的思路和办法。持续优化党建考核评价体系。二是纵深推进基层党建,打造坚强战斗堡垒。创新实施党建工作模式,继续打造党建品牌,抓实“五强五化”党组织创建,广泛开展党员教育学习活动,以实际行动推动党建工作和经营发展目标同向、部署同步、工作同力。三是加强高素质专业化党员队伍管理。配齐配强支部党务工作者,把党务工作岗位作为培养锻炼干部的重要平台。
二要专注于解决问题。根据市委促进经济转型的总要求,聚焦“四个经济”和“双中心”的建设,深入了解基层科技工作、学术交流、组织建设等方面的实际情况,全面了解群众的真实需求,解决相关问题,并针对科技工作中存在的问题,采取实际措施,推动问题的实际解决。三要专注于急难愁盼问题。优化“民声热线”,推动解决一系列基层民生问题,努力将“民声热线”打造成主题教育的关键工具和展示平台。目前,“民声热线”已回应了群众的8个政策问题,并成功解决其中7个问题,真正使人民群众感受到了实质性的变化和效果。接下来,我局将继续深入学习主题教育的精神,借鉴其他单位的优秀经验和方法,以更高的要求、更严格的纪律、更实际的措施和更好的成果,不断深化主题教育的实施,展现新的风貌和活力。
今年3月,市政府出台《关于加快打造更具特色的“水运XX”的意见》,提出到2025年,“苏南运河全线达到准二级,实现2000吨级舶全天候畅行”。作为“水运XX”建设首战,谏壁闸一线闸扩容工程开工在即,但项目开工前还有许多实际问题亟需解决。结合“到一线去”专项行动,我们深入到谏壁闸一线,详细了解工程前期进展,实地察看谏壁闸周边环境和舶通航情况,不断完善施工设计方案。牢牢把握高质量发展这个首要任务,在学思践悟中开创建功之业,坚定扛起“走在前、挑大梁、多做贡献”的交通责任,奋力推动交通运输高质量发展持续走在前列。以学促干建新功,关键在推动高质量发展持续走在前列。新时代中国特色社会主义思想着重强调立足新发展阶段、贯彻新发展理念、构建新发展格局,推动高质量发展,提出了新发展阶段我国经济高质量发展要坚持的主线、重大战略目标、工作总基调和方法论等,深刻体现了这一思想的重要实践价值。
三、2024年工作计划一是完善基层公共文化服务管理标准化模式,持续在公共文化服务精准化上探索创新,围绕群众需求,不断调整公共文化服务内容和形式,提升群众满意度。推进乡镇(街道)“114861”工程和农村文化“121616”工程,加大已开展活动的上传力度,确保年度目标任务按时保质保量完成。服务“双减”政策,持续做好校外培训机构审批工作,结合我区工作实际和文旅资源优势,进一步丰富我市义务教育阶段学生“双减”后的课外文化生活,推动“双减”政策走深走实。二是结合文旅产业融合发展示范区,全力推进全域旅游示范区创建,严格按照《国家全域旅游示范区验收标准》要求,极推动旅游产品全域布局、旅游要素全域配置、旅游设施全域优化、旅游产业全域覆盖。
1、该生学习态度端正 ,能够积极配合老师 ,善于调动课堂气氛。 能够积极完成老师布置的任务。学习劲头足,听课又专注 ,做事更认 真 ,你是同学们学习的榜样。但是,成绩只代表昨天,并不能说明你 明天就一定也很优秀。所以,每个人都应该把成绩当作自己腾飞的起 点。2、 你不爱说话 ,但勤奋好学,诚实可爱;你做事踏实、认真、为 人忠厚 ,是一个品行端正、有上进心、有良好的道德修养的好学生。在学习上,积极、主动,能按时完成老师布置的作业,经过努力 ,各 科成绩都有明显进步,你有较强的思维能力和学习领悟力,学习也有 计划性,但在老师看来,你的潜力还没有完全发挥出来,学习上还要有持久的恒心和顽强的毅力。
二是全力推进在谈项目落地。认真落实“首席服务官”责任制,切实做好上海中道易新材料有机硅复配硅油项目、海南中顾垃圾焚烧发电炉渣综合利用项目、天勤生物生物实验基地项目、恺德集团文旅康养产业项目、三一重能风力发电项目、中国供销集团冷链物流项目跟踪对接,协调解决项目落户过程中存在的困难和问题,力争早日实现成果转化。三是强化招商工作考核督办。持续加大全县招商引资工作统筹调度及业务指导,贯彻落实项目建设“6421”时限及“每月通报、季度排名、半年分析、年终奖励”相关要求,通过“比实绩、晒单子、亮数据、拼项目”,进一步营造“比学赶超”浓厚氛围,掀起招商引资和项目建设新热潮。四是持续优化园区企业服务。
(二)坚持问题导向,持续改进工作。要继续在提高工作效率和服务质量上下功夫,积极学习借鉴其他部门及xx关于“四零”承诺服务创建工作的先进经验,同时主动查找并着力解决困扰企业和群众办事创业的难点问题。要进一步探索创新,继续优化工作流程,精简审批程序,缩短办事路径,压缩办理时限,深化政务公开,努力为企业当好“保姆”,为群众提供便利,不断适应新时代人民群众对政务服务的新需求。(三)深化内外宣传,树立良好形象。要深入挖掘并及时总结作风整顿“四零”承诺服务创建工作中形成的典型经验做法,进一步强化内部宣传与工作交流,推动全市创建工作质效整体提升。要面向社会和公众庄严承诺并积极践诺,主动接受监督,同时要依托电台、电视台、报纸及微信、微博等各类媒体大力宣传xx队伍作风整顿“四零”承诺服务创建工作成果,不断扩大社会知情面和群众知晓率。
(五)服务群众提效能方面。一是政府采购服务提档升级。建成“全区一张网”,各类采购主体所有业务实现“一网通办,提升办事效率;全面实现远程开标和不见面开标,降低供应商成本;要求400万元以上工程采购项目预留采购份额提高至采购比例的40%以上,支持中小企业发展。2022年,我区政府采购荣获”中国政府采购奖“,并以全国第一的成绩获得数字政府采购耕耘奖、新闻宣传奖,以各省中第一的成绩获得年度创新奖。二是财政电子票据便民利民。全区财政电子票据开具量突破1亿张,涉及资金810.87亿元。特别是在医疗领域,全区241家二级以上公立医疗机构均已全部上线医疗收费电子票据,大大解决了群众看病排队等待时间长、缴费取票不方便的问题,让患者”省心、省时、省力“。
一、活动开展情况及成效按照省委、市委对“大学习、大讨论、大调研”活动的部署要求,县委立即行动,于8月20日组织召开常委会会议,专题传达学习省委X在读书班上的讲话精神。5月2日,县委召开“大学习、大讨论、大调研”活动推进会,及时对活动开展的相关要求、任务进行再安排再部署,会后制定并下发了活动实施方案、重点课题调研方案、宣传报道方案等系列文件,有效指导活动开展。5月17日、9月1日,县委再次召开常委会会议,专题听取“大学习、大讨论、大调研”活动开展情况汇报,研究部署下阶段工作。9月13日,召开全县“大学习大讨论大调研”活动工作推进座谈会,深入贯彻全省、全市“大学习大讨论大调研”活动工作推进座谈会精神,总结交流活动经验,对下一阶段活动开展进行安排部署。“大学习、大讨论、大调研”活动的有序开展,为砥砺前行、底部崛起的X注入了强大的精神动力。
1.市政基础设施项目5项,总建设里程2.13km,投资概算2.28亿元。其中,烔炀大道(涉铁)工程施工单位已进场,项目部基本建成,正在办理临时用地、用电及用水等相关工作;中铁佰和佰乐(巢湖)二期10KV外线工程已签订施工合同;黄麓镇健康路、纬四路新建工程均已完成清单初稿编制,亟需黄麓镇完成图审工作和健康路新建工程的前期证件办理;公安学院配套道路项目在黄麓镇完成围墙建设后即可进场施工。2.公益性建设项目6项,总建筑面积15.62万㎡,投资概算10.41亿元。其中,居巢区职业教育中心新建工程、巢湖市世纪新都小学扩建工程已完成施工、监理招标挂网,2月上旬完成全部招标工作;合肥职业技术学院大维修三期已完成招标工作,近期签订施工合同后组织进场施工;半汤疗养院净化和医用气体工程已完成招标工作;半汤疗养院智能化工程因投诉暂时中止;巢湖市中医院(中西医结合医院)新建工程正在按照既定计划推进,预计4月中下旬挂网招标。