学法指导:高一学生对文言文阅读已具备了一些基础知识和积累,但对如何学习文言文,还是一个新课题,因此教师应引导学生掌握学习方法,运用已有的知识框架同化新信息,建立新的智能,逐步走向独立学习的境界。一、引导学生利用课文注释,使用工具书自己翻译,必要时教师进行点拨、解难,培养自学能力。二、告诉学生翻译文言文要遵循的原则。三、调动学生思考、讨论、交流的积极性,教师适时点拨,培养学生发现问题、解决问题的能力。四、提示学生反复诵读课文,体会文章所阐述的道理。五、鼓励学生及时归纳学习文言文的方法,注意积累文言文知识。教学程序:教学本课可安排2课时。第一课时:1、导入新课:首先给学生介绍毛泽东的七绝诗《为李进同志题所摄庐山仙人洞照》:“暮色苍茫看劲松,乱云飞渡仍从容。天生一个仙人洞,无限风光在险峰。”学生通过诵读领会了“无限风光在险峰”一句的含义。随后因势利导,引出课题,指出今天我们要学习的王安石的《游褒禅山记》,就含有类似的深邃哲理。
二、下半年工作打算国际国内形势复杂多变,上半年工信工作虽然取得了一定的成效,但还面临着要素资源约束愈发趋紧,综合评价结果运用范围有待拓宽,企业转型升级动力还需增强等问题。下半年,我们将继续全面贯彻落实市委、市政府各项决策部署,锚定目标任务,全力攻坚工业经济品质,力争在省制造业高质量发展示范区建设工作中取得新成效。(一)全面深化D建引领进一步优化组织设置。分链分层优化D的组织设置,完善产业链D组织架构图谱,畅通行业、条线、板块、部门联系,实现市、镇(区)联动和支撑单位协同配合的组织体系,不断提升组织覆盖和工作覆盖质量。进一步加强理论学习。紧密结合工信工作实际,扎实开展新一轮主题教育。通过工信讲坛、金点子、各类沙龙活动,形成学思践悟的浓厚氛围,推动理论学习走深向实。进一步打造D建阵地。落实基本制度,强化基本保障,建强基本队伍。高标准打造链上企业D建阵地,选派D建指导员到骨干企业开展指导工作,推动D建“齿轮”转起来、工作动起来,管理严起来、效果实起来。
(四)认真抓好林业灾害防控工作。一是保持森林防火平稳态势。出动宣传车辆300余次,发放森林防火、有害生物防治等宣传资料7000余份,AAA和抖音宣传森林防火投放60余万次,防火码APP应用率100%。开展野外火源治理及林区输配电设施火灾隐患排查8次,制止违规用火40余起,排查火灾隐患18处,均已整改,二是林业有害生物防治安全可控。开展5·12林草生物灾害防控宣传周活动。投入450万元开展美国白蛾飞机防治工作,共计作业面积40万亩,至6月6日,全部顺利完成。(五)壮大林业产业发展成果。一是抓住产业重点。重点发展林下种养殖和森林康养,目前已完成林下种植面积XX万亩,产值XX亿元;林下养殖面积XX万亩,产值XX亿元;森林景观利用5万亩,产值XX亿元。申报第九批省林业产业化龙头企业8家。
四是全力展示惠民利民新形象。办好“民生实事”夯实“利水之基”。完成省级民生实事项目水库除险加固5座、山塘综合整治4座,顺利通过16座农灌设施改造提升工程验收,强化供水保障。创建“节水载体”助推“绿色低碳”。开展洪畴镇人民政府、三州乡人民政府、福溪街道中心幼儿园、三合镇中心幼儿园、龙悦小区等7家节水载体创建,开展浙江明筑新材料有限公司、XX振华表面处理有限公司、白鹤镇中心幼儿园、龙禧小区等4家节水标杆单位(小区)创建。联合县综合行政执法局、台州市生态环境局XX分局等多家单位联合举办“水日游湖会”“节水找茬”及闯关答题抽奖等“世界水日”“中国水周”专题宣传活动,邀请抖音网红“一季三秋”参与拍摄节水视频,掀起活动热潮。活动期间共发放宣传资料和宣传品1000份,奖品300份。
一、工作成效(一)全面统筹法治XX建设,以头雁之姿攻坚依法行政堵点痛点难点。一是纵深谋划顶层设计。全力筹划、组织召开县委全面依法治县委员会会议和办公室主任会议,对法治建设和“八五”普法中期考核评估工作进行安排部署。二是全域推开重点工作。部署开展道路交通安全和运输执法领域突出问题专项整治工作,公安、交通运输等部门通过自查自纠,共排整改问题108个。三是一体推进建设考评。6月对全县各乡镇、各部门(单位)法治建设重点工作推进落实情况进行专项督查,确保全县年度法治建设各项任务落实落细。四是依法行政深入推进。联合县委编办深入各乡镇就乡镇赋权事项进行调研评估,全面掌握乡镇赋权的落实情况。对全县27个行政执法单位的4265件执法案卷进行全面评查,达到了以评查促提升,以评查促规范的目的。审查县政府常务会议题41件。五是行政争议高效化解。
7.加强高质量发展统计监测。一是强化经济监测预警。加强对上报数据进行横向、纵向的监测预警,同时对重点企业、重点行业的主要指标进行跟踪监测分析,撰写高质量统计分析文章,共撰写了各类经济形势分析及报告材料10余篇。二是撰写并发布了《XX区2022年国民经济和社会发展统计公报》,编印《XX统计月报》4册;编印了2021年《统计年鉴》。三是积极开展统计服务,为区委政研室、区政府经调室、区发改局、区财政局、区绩效办、区生态环境分局、区统战部等部门提供相关统计数据。8.扎实推进第五次全国经济普查工作。一是高度重视,部署早。4月,郑明明区长主持召开了五经普工作部署会议,研究明确了区五经普组织机构、方案制定、经费落实等重点工作,明确了全区五经普工作组织领导事项。6月,区委、区政府集中研究审核了相关工作方案文件。7月12日,全省、全市五经普动员会后,立即召开了全区五经普启动部署会议。
一、工作完成情况(一)持续抓深抓实抓责任,汇聚力量促振兴。一是健全帮扶联系制度。建立统一高效的巩固拓展脱贫攻坚成果同乡村振兴有效衔接的议事协调工作机制,通过县巩固拓展脱贫攻坚成果专项小组研究部署重点工作,制发《XX县巩固拓展脱贫攻坚成果专项小组2024年工作要点》等系列文件。二是完善工作推进机制。每月印发《工作提示单》,不定期制发重点工作通报,加大调研走访力度,对重点工作做到常提醒、常督促,助推各镇、县直各单位落实主体责任。(二)持续抓巩固拓展脱贫攻坚成果,牢牢守好底线。一是推进三保一安联席制度。落实“三保一安”联席制度,在健全防止因病返贫致贫风险、控辍保学、农村脱贫人口住房安全动态监测、农村供水工程长效管理上下功夫,确保“三保障”和饮水安全成果巩固提升。截至目前,教育方面2024年享受春季学生资助241人约19.92万元,春季“雨露计划”97人14.7万元;医疗方面脱贫人口家庭医生总签约3663人,脱贫人口和监测对象已全部参加2024年医疗保险和防贫保;住房方面将3户脱贫户纳入危房改造计划,于10月底竣工并完成验收;饮水安全方面已启动城乡供水一体化项目,偏远地区新建4个饮水项目。
可爱的同学们、可敬的老师们:大家好! 结束了愉快的暑假生活,今天我们又聚集在xx小学校园里,迎接最有希望和生机的XX学年第一学期。今天是新一学期开学的第一天,我们在这里举行新学期升旗仪式,借此机会,我代表咱们学校,向全校师生致以最诚挚的祝福,祝全体同学和老师在新的一学期里身心健康、工作顺利、学习进步、梦想成真。 本学期,有六位新老师和一年级六十六位新同学加入了xx小学这个大家庭,请大家用热烈的掌声,对新老师和新同学表示最热烈的欢迎! 过去的一学年,在全体师生的共同努力下,学校取得了不少成绩,获得了不少荣誉。这是全体学生刻苦努力、勤奋学习的结果,更是老师们辛勤耕耘、用心浇灌的结果,它必将鼓舞我们满怀信心、昂首阔步踏上新学年的阳光大道! 同学们,面对徐徐升起的五星红旗,你们在想什么呢?作为一个小学生,如何使自己成为家庭的好孩子、学校的好学生、社会的好少年呢?将来如何更好地适应新形势的需求,把自己塑造成为符合时代发展的、能为社会作贡献的人才呢?
【活动目标】1、让幼儿从玩气球的游戏中体验快乐。2、使幼儿感知空气能流动的特点。3、知道被污染的空气会影响我们的健康,激发幼儿初步的环保意识。 【活动准备】 气球若干、在场地一角布置小树林、气球的家。 【活动过程】 一、让幼儿有一个快乐的开始。师:“孩子们,你的手里拿的什么?”师:“气球真好玩,我们进来和气球一起做游戏吧!”带领幼儿进入活动室。师:“找个能活动开的地方站好,我们和气球一起跳舞了。”手拿气球做律动。师:“气球等不及要和我们玩了,我们一起玩吧”幼儿自由玩气球。师:“气球累了,要回家休息一下,来,我们把他们送回家休息一下。”
(一)游戏导入。在这个活动的开始,老师和孩子们围坐成半圆形,这样就自然地缩短了老师和孩子们之间的距离,孩子们会觉得老师很亲近自己,为游戏情景的设置打好了情感基础。接着,老师出示莲蓬剥出莲子“这是什么呢?对,莲子。我们要在池塘里种上莲子,明年才能结出莲蓬。今天,请小朋友扮演池塘里的泥,老师把这颗莲子种到池塘里,大家一起玩一个种莲子的游戏。”良好的游戏情景自然的设置好了,这也是激发孩子们参与的兴趣、集中孩子们注意力的一种很好的策略。(二)交代游戏规则及玩法。游戏规则有以下几点:1、扮泥的小朋友必须将眼睛闭起来,不能偷看,等儿歌念完后才能睁开。2、种莲子的人会在儿歌结束前将莲子放在一个小朋友的手里,并且用简短的语言来描述这个小朋友的外貌特征,请大家来猜。3、被猜出的小朋友必须重复说出自己的外貌特征。
说教材本课时的教学要点是引导学生分析失信的原因,找到解决的方法,并懂得和做到对自 己守信。数师可以按照教材内容的编排顺序进行教学,先设计讨论活动,引导学生针对具体的失信行为分析原因,井能对症下药,找出相应的解决方法,然后转向“对自己说话算数" 的内容。对此,教师可以通过数材中“张明对自己说话算数”的内容,引导学生思考并讨论 为什么要对自己守信,从而让他们认识到无论是对别人还是对自己都旻言行一致、说话算数.教师旻强调对自己说话算数主要靠自觉和白律,并让学生学习史多的守信方法,并运用在自己的守信实跋中。学情分析诚信对学生来说是老生常谈,在学校或是日程的生活中,老师、长辈总会要求孩子能做到诚实,不说谎。但实际上,很多孩子乱下保证,却常常做不到,导致失信,但在他们眼中这并不算是不诚信。因此我们需要在根本上改变他们的这一认识与看法。通过角色扮演在帮别人改正说话不算数的毛病过程中,自 纠身上存在的失信问题并改正。
本节课我设计了四个教学环节 。 环节一:创设情境,激趣导入学生阅读教材第 34 页的绘本《爷爷家的洗脸水》,读完之后交 流感受,教师引导到水很珍贵的话题,由此导入新课,板书课题:小水滴的诉说。设计意图:激发学生的学习兴趣,并引出本节课要学习的内容, 为接下来的学习作好铺垫。环节二:自主探究,合作交流 这一环节我安排了三个活动。 活动一:我很宝贵首先,课件出示教材第 35页的小诗《小水滴的自我介绍》,并 播放画外音,学生说一说对水的认识。然后,学生阅读教材第 34 页和第 35 页的图文,结合课前查找收集到的有关水资源的资料,说说发现了什么?教师相机引导,板书:宝贵稀少。设计意图:了解水与人们生活的关系,感受水资源的珍贵。 活动二:我遭遇了不幸学生阅读教材第 36页的图文,找一找小水滴遭遇了哪些不幸。 小组内交流,生活中见到的小水滴遭遇的不幸,全班交流汇报,教 师相机引导,板书:珍惜。设计意图:发现生活中污染、浪费水资源的现象,明白可以靠 法律法规的作用,切实有效地保护水资源。
反思感悟用基底表示空间向量的解题策略1.空间中,任一向量都可以用一个基底表示,且只要基底确定,则表示形式是唯一的.2.用基底表示空间向量时,一般要结合图形,运用向量加法、减法的平行四边形法则、三角形法则,以及数乘向量的运算法则,逐步向基向量过渡,直至全部用基向量表示.3.在空间几何体中选择基底时,通常选取公共起点最集中的向量或关系最明确的向量作为基底,例如,在正方体、长方体、平行六面体、四面体中,一般选用从同一顶点出发的三条棱所对应的向量作为基底.例2.在棱长为2的正方体ABCD-A1B1C1D1中,E,F分别是DD1,BD的中点,点G在棱CD上,且CG=1/3 CD(1)证明:EF⊥B1C;(2)求EF与C1G所成角的余弦值.思路分析选择一个空间基底,将(EF) ?,(B_1 C) ?,(C_1 G) ?用基向量表示.(1)证明(EF) ?·(B_1 C) ?=0即可;(2)求(EF) ?与(C_1 G) ?夹角的余弦值即可.(1)证明:设(DA) ?=i,(DC) ?=j,(DD_1 ) ?=k,则{i,j,k}构成空间的一个正交基底.
4.已知△ABC三个顶点坐标A(-1,3),B(-3,0),C(1,2),求△ABC的面积S.【解析】由直线方程的两点式得直线BC的方程为 = ,即x-2y+3=0,由两点间距离公式得|BC|= ,点A到BC的距离为d,即为BC边上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面积为4.5.已知直线l经过点P(0,2),且A(1,1),B(-3,1)两点到直线l的距离相等,求直线l的方程.解:(方法一)∵点A(1,1)与B(-3,1)到y轴的距离不相等,∴直线l的斜率存在,设为k.又直线l在y轴上的截距为2,则直线l的方程为y=kx+2,即kx-y+2=0.由点A(1,1)与B(-3,1)到直线l的距离相等,∴直线l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)当直线l过线段AB的中点时,A,B两点到直线l的距离相等.∵AB的中点是(-1,1),又直线l过点P(0,2),∴直线l的方程是x-y+2=0.当直线l∥AB时,A,B两点到直线l的距离相等.∵直线AB的斜率为0,∴直线l的斜率为0,∴直线l的方程为y=2.综上所述,满足条件的直线l的方程是x-y+2=0或y=2.
一、情境导学在一条笔直的公路同侧有两个大型小区,现在计划在公路上某处建一个公交站点C,以方便居住在两个小区住户的出行.如何选址能使站点到两个小区的距离之和最小?二、探究新知问题1.在数轴上已知两点A、B,如何求A、B两点间的距离?提示:|AB|=|xA-xB|.问题2:在平面直角坐标系中能否利用数轴上两点间的距离求出任意两点间距离?探究.当x1≠x2,y1≠y2时,|P1P2|=?请简单说明理由.提示:可以,构造直角三角形利用勾股定理求解.答案:如图,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即两点P1(x1,y1),P2(x2,y2)间的距离|P1P2|=?x2-x1?2+?y2-y1?2.你还能用其它方法证明这个公式吗?2.两点间距离公式的理解(1)此公式与两点的先后顺序无关,也就是说公式也可写成|P1P2|=?x2-x1?2+?y2-y1?2.(2)当直线P1P2平行于x轴时,|P1P2|=|x2-x1|.当直线P1P2平行于y轴时,|P1P2|=|y2-y1|.
(2)l的倾斜角为90°,即l平行于y轴,所以m+1=2m,得m=1.延伸探究1 本例条件不变,试求直线l的倾斜角为锐角时实数m的取值范围.解:由题意知(m"-" 1"-" 1)/(m+1"-" 2m)>0,解得1<m<2.延伸探究2 若将本例中的“N(2m,1)”改为“N(3m,2m)”,其他条件不变,结果如何?解:(1)由题意知(m"-" 1"-" 2m)/(m+1"-" 3m)=1,解得m=2.(2)由题意知m+1=3m,解得m=1/2.直线斜率的计算方法(1)判断两点的横坐标是否相等,若相等,则直线的斜率不存在.(2)若两点的横坐标不相等,则可以用斜率公式k=(y_2 "-" y_1)/(x_2 "-" x_1 )(其中x1≠x2)进行计算.金题典例 光线从点A(2,1)射到y轴上的点Q,经y轴反射后过点B(4,3),试求点Q的坐标及入射光线的斜率.解:(方法1)设Q(0,y),则由题意得kQA=-kQB.∵kQA=(1"-" y)/2,kQB=(3"-" y)/4,∴(1"-" y)/2=-(3"-" y)/4.解得y=5/3,即点Q的坐标为 0,5/3 ,∴k入=kQA=(1"-" y)/2=-1/3.(方法2)设Q(0,y),如图,点B(4,3)关于y轴的对称点为B'(-4,3), kAB'=(1"-" 3)/(2+4)=-1/3,由题意得,A、Q、B'三点共线.从而入射光线的斜率为kAQ=kAB'=-1/3.所以,有(1"-" y)/2=(1"-" 3)/(2+4),解得y=5/3,点Q的坐标为(0,5/3).
一、情境导学前面我们已经得到了两点间的距离公式,点到直线的距离公式,关于平面上的距离问题,两条直线间的距离也是值得研究的。思考1:立定跳远测量的什么距离?A.两平行线的距离 B.点到直线的距离 C. 点到点的距离二、探究新知思考2:已知两条平行直线l_1,l_2的方程,如何求l_1 〖与l〗_2间的距离?根据两条平行直线间距离的含义,在直线l_1上取任一点P(x_0,y_0 ),,点P(x_0,y_0 )到直线l_2的距离就是直线l_1与直线l_2间的距离,这样求两条平行线间的距离就转化为求点到直线的距离。两条平行直线间的距离1. 定义:夹在两平行线间的__________的长.公垂线段2. 图示: 3. 求法:转化为点到直线的距离.1.原点到直线x+2y-5=0的距离是( )A.2 B.3 C.2 D.5D [d=|-5|12+22=5.选D.]
1.直线2x+y+8=0和直线x+y-1=0的交点坐标是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程组{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交点坐标是(-9,10).答案:B 2.直线2x+3y-k=0和直线x-ky+12=0的交点在x轴上,则k的值为( )A.-24 B.24 C.6 D.± 6解析:∵直线2x+3y-k=0和直线x-ky+12=0的交点在x轴上,可设交点坐标为(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故选A.答案:A 3.已知直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,若l1⊥l2,则点P的坐标为 . 解析:∵直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,联立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴点P的坐标为(3,3).答案:(3,3) 4.求证:不论m为何值,直线(m-1)x+(2m-1)y=m-5都通过一定点. 证明:将原方程按m的降幂排列,整理得(x+2y-1)m-(x+y-5)=0,此式对于m的任意实数值都成立,根据恒等式的要求,m的一次项系数与常数项均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤
(1)几何法它是利用图形的几何性质,如圆的性质等,直接求出圆的圆心和半径,代入圆的标准方程,从而得到圆的标准方程.(2)待定系数法由三个独立条件得到三个方程,解方程组以得到圆的标准方程中三个参数,从而确定圆的标准方程.它是求圆的方程最常用的方法,一般步骤是:①设——设所求圆的方程为(x-a)2+(y-b)2=r2;②列——由已知条件,建立关于a,b,r的方程组;③解——解方程组,求出a,b,r;④代——将a,b,r代入所设方程,得所求圆的方程.跟踪训练1.已知△ABC的三个顶点坐标分别为A(0,5),B(1,-2),C(-3,-4),求该三角形的外接圆的方程.[解] 法一:设所求圆的标准方程为(x-a)2+(y-b)2=r2.因为A(0,5),B(1,-2),C(-3,-4)都在圆上,所以它们的坐标都满足圆的标准方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圆的标准方程是(x+3)2+(y-1)2=25.
1.两圆x2+y2-1=0和x2+y2-4x+2y-4=0的位置关系是( )A.内切 B.相交 C.外切 D.外离解析:圆x2+y2-1=0表示以O1(0,0)点为圆心,以R1=1为半径的圆.圆x2+y2-4x+2y-4=0表示以O2(2,-1)点为圆心,以R2=3为半径的圆.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圆x2+y2-1=0和圆x2+y2-4x+2y-4=0相交.答案:B2.圆C1:x2+y2-12x-2y-13=0和圆C2:x2+y2+12x+16y-25=0的公共弦所在的直线方程是 . 解析:两圆的方程相减得公共弦所在的直线方程为4x+3y-2=0.答案:4x+3y-2=03.半径为6的圆与x轴相切,且与圆x2+(y-3)2=1内切,则此圆的方程为( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:设所求圆心坐标为(a,b),则|b|=6.由题意,得a2+(b-3)2=(6-1)2=25.若b=6,则a=±4;若b=-6,则a无解.故所求圆方程为(x±4)2+(y-6)2=36.答案:D4.若圆C1:x2+y2=4与圆C2:x2+y2-2ax+a2-1=0内切,则a等于 . 解析:圆C1的圆心C1(0,0),半径r1=2.圆C2可化为(x-a)2+y2=1,即圆心C2(a,0),半径r2=1,若两圆内切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知两个圆C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直线l:x+2y=0,求经过C1和C2的交点且和l相切的圆的方程.解:设所求圆的方程为x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圆心为 1/(1+λ),2/(1+λ) ,半径为1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圆x2+y2=4显然不符合题意,故所求圆的方程为x2+y2-x-2y=0.