1.两圆x2+y2-1=0和x2+y2-4x+2y-4=0的位置关系是( )A.内切 B.相交 C.外切 D.外离解析:圆x2+y2-1=0表示以O1(0,0)点为圆心,以R1=1为半径的圆.圆x2+y2-4x+2y-4=0表示以O2(2,-1)点为圆心,以R2=3为半径的圆.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圆x2+y2-1=0和圆x2+y2-4x+2y-4=0相交.答案:B2.圆C1:x2+y2-12x-2y-13=0和圆C2:x2+y2+12x+16y-25=0的公共弦所在的直线方程是 . 解析:两圆的方程相减得公共弦所在的直线方程为4x+3y-2=0.答案:4x+3y-2=03.半径为6的圆与x轴相切,且与圆x2+(y-3)2=1内切,则此圆的方程为( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:设所求圆心坐标为(a,b),则|b|=6.由题意,得a2+(b-3)2=(6-1)2=25.若b=6,则a=±4;若b=-6,则a无解.故所求圆方程为(x±4)2+(y-6)2=36.答案:D4.若圆C1:x2+y2=4与圆C2:x2+y2-2ax+a2-1=0内切,则a等于 . 解析:圆C1的圆心C1(0,0),半径r1=2.圆C2可化为(x-a)2+y2=1,即圆心C2(a,0),半径r2=1,若两圆内切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知两个圆C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直线l:x+2y=0,求经过C1和C2的交点且和l相切的圆的方程.解:设所求圆的方程为x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圆心为 1/(1+λ),2/(1+λ) ,半径为1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圆x2+y2=4显然不符合题意,故所求圆的方程为x2+y2-x-2y=0.
【答案】B [由直线方程知直线斜率为3,令x=0可得在y轴上的截距为y=-3.故选B.]3.已知直线l1过点P(2,1)且与直线l2:y=x+1垂直,则l1的点斜式方程为________.【答案】y-1=-(x-2) [直线l2的斜率k2=1,故l1的斜率为-1,所以l1的点斜式方程为y-1=-(x-2).]4.已知两条直线y=ax-2和y=(2-a)x+1互相平行,则a=________. 【答案】1 [由题意得a=2-a,解得a=1.]5.无论k取何值,直线y-2=k(x+1)所过的定点是 . 【答案】(-1,2)6.直线l经过点P(3,4),它的倾斜角是直线y=3x+3的倾斜角的2倍,求直线l的点斜式方程.【答案】直线y=3x+3的斜率k=3,则其倾斜角α=60°,所以直线l的倾斜角为120°.以直线l的斜率为k′=tan 120°=-3.所以直线l的点斜式方程为y-4=-3(x-3).
一、情境导学前面我们已经得到了两点间的距离公式,点到直线的距离公式,关于平面上的距离问题,两条直线间的距离也是值得研究的。思考1:立定跳远测量的什么距离?A.两平行线的距离 B.点到直线的距离 C. 点到点的距离二、探究新知思考2:已知两条平行直线l_1,l_2的方程,如何求l_1 〖与l〗_2间的距离?根据两条平行直线间距离的含义,在直线l_1上取任一点P(x_0,y_0 ),,点P(x_0,y_0 )到直线l_2的距离就是直线l_1与直线l_2间的距离,这样求两条平行线间的距离就转化为求点到直线的距离。两条平行直线间的距离1. 定义:夹在两平行线间的__________的长.公垂线段2. 图示: 3. 求法:转化为点到直线的距离.1.原点到直线x+2y-5=0的距离是( )A.2 B.3 C.2 D.5D [d=|-5|12+22=5.选D.]
(1)几何法它是利用图形的几何性质,如圆的性质等,直接求出圆的圆心和半径,代入圆的标准方程,从而得到圆的标准方程.(2)待定系数法由三个独立条件得到三个方程,解方程组以得到圆的标准方程中三个参数,从而确定圆的标准方程.它是求圆的方程最常用的方法,一般步骤是:①设——设所求圆的方程为(x-a)2+(y-b)2=r2;②列——由已知条件,建立关于a,b,r的方程组;③解——解方程组,求出a,b,r;④代——将a,b,r代入所设方程,得所求圆的方程.跟踪训练1.已知△ABC的三个顶点坐标分别为A(0,5),B(1,-2),C(-3,-4),求该三角形的外接圆的方程.[解] 法一:设所求圆的标准方程为(x-a)2+(y-b)2=r2.因为A(0,5),B(1,-2),C(-3,-4)都在圆上,所以它们的坐标都满足圆的标准方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圆的标准方程是(x+3)2+(y-1)2=25.
切线方程的求法1.求过圆上一点P(x0,y0)的圆的切线方程:先求切点与圆心连线的斜率k,则由垂直关系,切线斜率为-1/k,由点斜式方程可求得切线方程.若k=0或斜率不存在,则由图形可直接得切线方程为y=b或x=a.2.求过圆外一点P(x0,y0)的圆的切线时,常用几何方法求解设切线方程为y-y0=k(x-x0),即kx-y-kx0+y0=0,由圆心到直线的距离等于半径,可求得k,进而切线方程即可求出.但要注意,此时的切线有两条,若求出的k值只有一个时,则另一条切线的斜率一定不存在,可通过数形结合求出.例3 求直线l:3x+y-6=0被圆C:x2+y2-2y-4=0截得的弦长.思路分析:解法一求出直线与圆的交点坐标,解法二利用弦长公式,解法三利用几何法作出直角三角形,三种解法都可求得弦长.解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交点A(1,3),B(2,0),故弦AB的长为|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.设两交点A,B的坐标分别为A(x1,y1),B(x2,y2),则由根与系数的关系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的长为√10.解法三圆C:x2+y2-2y-4=0可化为x2+(y-1)2=5,其圆心坐标(0,1),半径r=√5,点(0,1)到直线l的距离为d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦长为("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦长|AB|=√10.
解析:①过原点时,直线方程为y=-34x.②直线不过原点时,可设其方程为xa+ya=1,∴4a+-3a=1,∴a=1.∴直线方程为x+y-1=0.所以这样的直线有2条,选B.答案:B4.若点P(3,m)在过点A(2,-1),B(-3,4)的直线上,则m= . 解析:由两点式方程得,过A,B两点的直线方程为(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又点P(3,m)在直线AB上,所以3+m-1=0,得m=-2.答案:-2 5.直线ax+by=1(ab≠0)与两坐标轴围成的三角形的面积是 . 解析:直线在两坐标轴上的截距分别为1/a 与 1/b,所以直线与坐标轴围成的三角形面积为1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三个顶点A(0,4),B(-2,6),C(-8,0).(1)求三角形三边所在直线的方程;(2)求AC边上的垂直平分线的方程.解析(1)直线AB的方程为y-46-4=x-0-2-0,整理得x+y-4=0;直线BC的方程为y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直线AC的方程为x-8+y4=1,整理得x-2y+8=0.(2)线段AC的中点为D(-4,2),直线AC的斜率为12,则AC边上的垂直平分线的斜率为-2,所以AC边的垂直平分线的方程为y-2=-2(x+4),整理得2x+y+6=0.
解析:当a0时,直线ax-by=1在x轴上的截距1/a0,在y轴上的截距-1/a>0.只有B满足.故选B.答案:B 3.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:设所求直线方程为x-2y+c=0,把点(1,0)代入可求得c=-1.所以所求直线方程为x-2y-1=0.故选A.4.已知两条直线y=ax-2和3x-(a+2)y+1=0互相平行,则a=________.答案:1或-3 解析:依题意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直线.(1)求实数m的范围;(2)若该直线的斜率k=1,求实数m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直线,则m2-3m+2与m-2不能同时为0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.
2、从周围生活中发现多种有趣的数字,初步了解数字在生活中的实际意义。 活动准备: 1、幼儿收集的有数字的物品; 2、电脑课件(打电话的情景) 3、英语儿歌 活动过程: 一、英语儿歌引出。 提问:说说这首儿歌里有哪些数字? 二、介绍生活中有数字的物品。 你收集的材料上有哪些数字,它们有什么作用? (在此进行提升幼儿对数字的认识,如:食品袋上的数字代表生产日期、保质期;药瓶上不仅有保质期,而且还有剂量等。我们生活中处处有数字,数字用处很大。它可以表示顺序、日期、时间等。如果没有数字,生活就会变得乱糟糟,甚至还会出事故呢!)。
活动准备: 1、森林背景图,6张蘑菇房子图片。 2、1-6的大点卡和数卡一套。 3、小猴、小兔头饰各一个和老虎的图片一张 4、幼儿数学操作板1个/人,1-6的点卡一套/人。 5、标有1—6的数字卡片,每个小朋友一张 6、故事《住宾馆》。 活动过程: 一、开始部分:初步理解“邻居”关系。 1、拍手游戏:“嘿嘿,ⅹⅹⅹ(小朋友名),我问你,你的朋友在哪里?”“嘿嘿嘿,在这里!”(被问的小朋友举起旁边小朋友的手。) 2、我们每个小朋友都有自己午休的小床,请你说一说自己的邻居都有谁,让幼儿理解什么是邻居。
2、继续学习正确目测6以内的数群。 3、乐意主动的讲述自己的操作过程和结果。 活动准备: 1、教具:分类底版,6以内的实物卡片,相应数量的数卡 2、学具:超市售货员(分类底版,6以内的各种实物卡片,相应数(点)卡等),给一样多的发花(不同排列形式的实物操作卡,雪花片),一样多的放一起(6以内不同排列形式的实物卡片) 活动过程: 1、游戏导入,了解游戏玩法。 (1)出示分层式分类底版,各种球类实物卡。 教师:超市里有许多的球,让我们看看有哪些球呢?它们各是几个?你是怎么看出来的?引导幼儿用目测的方法数数,并能说一说自己数的方法。 (2)师幼共同讨论整理“分层货架”的规则:一样多的球放在一起
首先,请允许我代表集团领导班子向荣获集团舞台艺术终身成就奖的艺术家致敬!向荣获集团首届“德艺双馨文艺工作者”称号的同志致敬!向获得年度先进的单位和个人表示祝贺并致以深深的谢意!杰出者永远是我们的标杆,榜样的引领永远是强大的动能。我想,这种评选和颁授应该成为演艺集团的一个传统。演艺集团是一个特殊的企业,或许我们暂时还做不到财源滚滚(尽管我们做梦都希望财源滚滚),但一定要精品不断,好戏连台,人才辈出。换句话说,只要我们精品不断,好戏连台,人才辈出,我们就是一个卓越的企业。出人才,出精品,用好的作品讴歌时代,奉献人民,才是我们的核心价值和永恒追求。从今天受表彰的艺术家身上,从他们的经历、创作、成就,尤其是精神、品格和情怀,我们能感悟到一些什么?可能每个人的体会不尽相同,但起码有几点我们应该形成共识。
刚才的视频,我看的时候,心情澎湃,很有感触,不禁想起去年,种种坎坷、不易。*年,我们闭园*天,上半年业绩一落千丈,一度到了揭不开锅、山穷水尽的地步。那段时间,我原本稀疏的头发又更加稀疏了,好在你们厉害!你们证明了一点,掉了的头发虽不可能长回来,但掉了的收入,你们是能抢回来的!下半年,大家抓住时间窗口,暑期创了历史新高,潮玩节刷爆了抖音圈,在所有人认为不可能的冬天,首创冰雪节,击败了寒冷,*月*日最后一天收入*万,使得全年营业收入反超*年!*年超过*年,这个情况在欢乐谷当中是没有的,在整个景区行业当中我猜也是屈指可数的,说明你们很厉害啊!你们是行业当中的佼佼者!了不起!我单独说一下冰雪节。冰雪节给了我两点启发,一是艰苦奋斗,二是创新求变。北方的冬天,是传统的淡季,在主题公园做冰雪节,这是没有做过的,是首创,对我个人而言,改变了我的惯性思维。我曾经很固执的认为,淡季就是淡季,是市场规律,把淡季变旺是费力不讨好,是不可能的。然而,你们用漂亮的业绩狠狠的教育了我,教育我为什么要创新求变,事实证明这是对的,这就是创新求变的意义!
环节四 课堂小结 巩固知识本节课我采用线索性的板书,整个知识结构一目了然,为了充分发挥学生在课堂的主体地位,我将课堂小结交由学生完成,请学生根据课堂学习的内容,结合我的板书设计来进行小结,以此来帮助教师在第一时间掌握学生学习信息的反馈,同时培养学生归纳分析能力、概括能力。环节五 情景回归,情感升华我的实习指导老师告诉过我们,政治这一门学科要从生活中来到生活去,所以在课堂的最后布置了课外探究题,以此培养学生对理论的实际运用能力,同时检验他们对知识的真正掌握情况,以此达到情感的升华,本节课,我根据建构主义理论,强调学生是学习的中心,学生是知识意义的主动建构者,是信息加工的主体,要强调学生在课堂中的参与性、以及探究性,不仅让他们懂得知识,更让他们相信知识,并且将知识融入到实践当中去,最终达到知、情、意、行的统一。
环节三情景模拟 情感升华首先:1、本课开始观看的视频中:选出村长体现了村民参加选举的什么态度?生活中一些人“多我一票不多,少我一票不少,选举与我无关"的想法2、你如何看待上述两种不同态度?为什么?发表你的看法【教师这个过程中点拨、引导】如果我们都不珍惜自己的选举权,那么我们的国家将会出现什么后果?3、那么作为将来选民和被选举人,你们认为应具有那些政治素养才能适应?学生结合教材思考(1)(提示)不行使或不认真行使自己的选举权,意味着我们将不能选举出能为人民谋福利的当家人,意味着我们的国家将由重蹈旧中国的覆辙。(2)从态度上讲:公民应积极参加选举,认真行使这一权利,不断增强公民意识和主人翁意识,增强公民的参与感和责任感。(3)从能力上讲:要不断提高公民的政治参与能力(政治素质、文化素质、议政能力),在周全考虑、理性判断的基础上,郑重地投出自己的一票。
各小组派代表汇报。4、教师提出问题组织学生讨论:⑴要想了解更多的绿色食品,了解绿色食品的销售情况,我们应该怎么做?⑵要想了解广大消费者对绿色食品的态度,食用绿色食品的意义,是否懂得辨认绿色食品,以及什么样的人群对此知识最缺乏等,我们应该怎么做?组织学生汇报交流。5、做个“绿色食品”广告设计师。为你喜欢的绿色食品设计广告语,每组推荐一个。6、让学生了解绿色食品认证程序。7、绿色食品打“假”队员在行动。8、向学生介绍生态绿色食品基地。三、活动总结:通过研究、探讨,了解学生对绿色食品的态度。提问:民以食为天,吃,是一个大问题,如果你的爸爸妈妈让你到超市买牛奶、方便面等,你会选择什么样的食品?为什么?希望通过今天的学习,同学们能够做到绿色消费,也希望你们向自己的家人、向周围的了解学生对“无公害食品”、“有机食品”与“绿色食品”的认识。
分析过焦作市的地理概况和产业优势后,就需要针对由于资源枯竭所带来的问题提出合理化的建议。既然是谈经济转型,就应该将话题的范围明确在这一领域内。通过材料3的相关内容,我们了解到焦作市需要在产业结构调整、培育新的优势产业、增强综合竞争力等三个整改方针上下功夫。因而引导学生针对优势与不足提出建议,以三个整改方针为基准,衡量建议的可行性是锻炼学生解决此类问题的有效途径。在此我将教会学生的是解决问题方法而非案例的内容,正所谓“授之以鱼,不如授之以渔”。接下来针对学生的建议和教材资料分析所罗列的10点整改思路,由学生自由发言提出看法,通过教师的指导和学生的讨论,进而确定经济转型建议的具体方案。最后注意将建议与产业优势相对照,看建议是否都是围绕着产业优势而提出的,这样做会加深学生的印象,通过建议和优势的对应关系,将不难找出此类问题的解题思路。
2、发展幼儿的观察力和绘画表现能力。3、加深幼儿对老师的热爱之情。二、活动准备:1、请配班老师配合上课。2、带花边的纸或一次性纸餐盘若干、彩笔。三、活动过程:1、引出教师节,导入活动,引起幼儿兴趣。教师:小朋友,我们班上有几位老师?你们怎样称呼她们?明天就是教师节了,今天我们给老师画张像,画好后,送给老师好不好?
一、说教材《古诗三首》是统编小学语文三年级下册第三单元中的第一篇课文。本课有三首古诗。宋代诗人王安石的《元日》一诗中作者通过“爆竹声”、“屠苏酒”“换桃符”以及开始送暖的春风等新年特有景物的描绘,展现了人们在春节的欢快情景和万象更新的情景。结句“总把新桃换旧符”既是写当时的民间习俗,又寓含除旧布新的意思。这首诗是通过新年新气象的描写,抒写自己执政变法,除旧布新,强国富民的抱负和乐观自信的情感。《清明》一诗中作者杜牧描写的是中国传统节日清明时节的景象,借春雨绵绵寄托了作者对逝去亲人的惆怅感伤无限哀思。这是一首叙事诗,寓情于景,同时这也是一首七言绝句,语言十分简洁,通俗易懂,音韵和谐。
4、本文的重点是说辞,虽仅百余字,却委婉曲折,步步进逼,层层深入,表现出高超的劝说艺术、游说技巧。让学生细细品味并概括说辞中包含几层意思。第一层(“秦、晋围郑,郑既知亡矣”),分析形势,以退为进,博得好感。第二层(“若亡郑而有益于君”至“君之薄也”),亡郑陪邻,动摇联盟。第三层(“若舍郑以为东道主”至“君亦无所害”),存郑有益,利益引诱。第四层(“且君尝为晋君赐矣”至“唯君图之”),追溯历史,深入离间。可见烛之武面对大国的君主,巧舌如簧,不卑不亢,从容辞令,既不刺激对方也不失本国尊严,语言的分寸掌握得恰到好处。表现出烛之武机智善辩的外交才能。5、面对风云突变的局势,晋侯没有感情用事,而表现了清醒的头脑和理智的判断。这种隐忍不发、随机应变的胸怀和谋略,正是晋文公终成霸业的根本原因。设计意图:本环节的重点是全面把握烛之武这一人物性格特征,以及退秦师过程中体现出的非凡的胆识以及高超的谋略和语言艺术。
一、 说教材、目标这部分内容建立在学生对一元一次方程、二元一次方程组和一元一次不等式等以一次(线性)运算为基础的数学模型的已有认识上,从变化和对应的角度对一次运算进行更深入的讨论。从函数的角度对一次方程(组)、不等式重新进行了分析,这种再认识不是对原有知识的简单回顾复习,而是站在更高起点上的动态分析,是用一次函数将上述三个不同的数学对象起来认识,发挥函数对相关内容的统领作用。通过这部分内容的学习,不仅可以加深学生对方程(组)、不等式等数学对象的理解,而且可以增强对相关知识的内在联系的认识,加强知识间横向与纵向的融会贯通,提高灵活分析和解决问题的能力。本节课是在前两节课已经学完了一次函数与一元一次方程、一元一次不等式的联系之后,对一次函数与二元一次方程(组)关系的探索,是对一次函数及其相关内容更深入、更全面的学习,也是对这部分内容的一个提升和总结。