师:同学们这个暑假过得真不错呀,都有自己最开心的日子。同学们经历的这些活动,让你们自己长了知识,丰富了阅历,你们今天的介绍,也让我和更多的同学大开了眼界。由此可见,在今天,通过亲身参与、实践,通过网络、电影,通过交流发言,大家获得了许多新的信息、知识,增强了对祖国美好河山的热爱、对科技的向往和异国的友谊。同学们信息交流的过程,实际上也是文化传播的过程。板书课题:第二课时文化在交流中传播话题导入讨论话题:如何建设文明校园?(课前准备:要求同学们仔细观察、了解关于校园文明现象的问题,并就如何建设文明校园提出自己的建议。教师可按自然组,让学生推选一名代表发言,就校园文明方面谈谈存在的问题和不足,或提出一些中肯的改进意见)(学生交流)生1:建设文明校园,首先要净化语言环境,我们学校不少同学爱说脏话,与文明校园很不相称。
一、教材分析文化市场和大众传媒的发展,给我们的文化生活带来了许多可喜的变化。但是,文化市场的自发性和传媒的商业性也引发了令人忧虑的现象。文化生活有“喜”也有“忧”,让我们欢喜让我们忧。面对形式多样的文化生活,置身于文化生活的海洋之中,在文化生活中如何选择、怎样作出正确的选择是亟待向学生解决的问题。二、学情分析高二学生处于世界观、人生观和价值观形成的关键时期,身心迅速发展,自我意识和独立性较强,社会公共生活空间范围越来越大,并且开始理性地思考社会和人生的重大问题,他们可塑性强,但情绪仍然不稳定,有多变性,容易冲动或偏激,迫切需要提升思想意识,加强方法论的指导,使其在纷繁复杂的文化生活中能够进行正确的判断与选择。如果我们的学生不能把握正确的航向,是非观念模糊,良莠不分,就会陷入落后文化和腐朽文化的泥沼而不能自拔,甚至造成无法挽回的恶果。
教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 3.4 二项分布. *创设情境 兴趣导入 我们来看一个问题:从100件产品中有3件不合格品,每次抽取一件有放回地抽取三次,抽到不合格品的次数用表示,求离散型随机变量的概率分布. 由于是有放回的抽取,所以这种抽取是是独立的重复试验.随机变量的所有取值为:0,1,2,3.显然,对于一次抽取,抽到不合格品的概率为0.03,抽到合格品的概率为1-0.03.于是的概率(仅求到组合数形式)分别为: , , , . 所以,随机变量的概率分布为 0123P 介绍 播放 课件 质疑 了解 观看 课件 思考 引导 启发学生得出结果 0 10*动脑思考 探索新知 一般地,如果在一次试验中某事件A发生的概率是P,随机变量为n次独立试验中事件A发生的次数,那么随机变量的概率分布为: 01…k…nP…… 其中. 我们将这种形式的随机变量的概率分布叫做二项分布.称随机变量服从参数为n和P的二项分布,记为~B(n,P). 二项分布中的各个概率值,依次是二项式的展开式中的各项.第k+1项为. 二项分布是以伯努利概型为背景的重要分布,有着广泛的应用. 在实际问题中,如果n次试验相互独立,且各次实验是重复试验,事件A在每次实验中发生的概率都是p(0<p<1),则事件A发生的次数是一个离散型随机变量,服从参数为n和P的二项分布. 总结 归纳 分析 关键 词语 思考 理解 记忆 引导学生发现解决问题方法 20
一年来,公司紧紧围绕法律工作要点,以“四项审核”为工作重心,进一步推进公司法治工作新五年规划的实施,取得了一定的成就,为企业快速、稳健发展保驾护航。一是法律制度不断完善。为将法治工作全面融入企业中心工作和生产经营,努力推动法治工作开展广覆盖,推动“法治XX”再升级。二是合同管理水平不断提升。合同管理作为现代企业管理的重要内容之一。把好合同关,是现代企业经营管理成败的一个重要因素。合同评审率及通过率较以前有了大幅度的提升。三是项目总法律顾问、法律联络员制度建设进一步健全。明确工作范围和职责,经理或主要负责人为法治工作第一责任人,形成完整的纵向联动机制。同时,总法律顾问、法律联络员挂牌办公、职责上墙,增强了项目总法律顾问、法律联络员的使命感和责任心。
理落差较大。一些老同志面对生活待遇问题,存在与在职干部、与其他机关单位攀比的心理。个别老同志随着年龄的增长、健康状况的下降,不同程度存在失落感和焦虑感。有些曾经豁达开通的老同志,退休后渐渐变得敏感和计较,生活中会因一件小事甚至一句话而产生负面情绪。有些曾任领导职务的老同志,不适应生活节奏改变,不适应“百姓”身份,容易产生失落、抵触、爱发泄等情绪。
一、突出财务收支和项目资金审计,切实发挥审计监督职能 全年计划对4个乡镇卫生院实施常规审计,对财务收支、项目资金管理、政府采购、国有资产管理及票据、物价等就地开展绩效审计。从会计基础工作规范和项目资金规范管理方面入手,检查工作中不规范的做法和存在的问题,提出建议和整改措施,建立长效管理机制,规范管理,增强领导干部的财经法规意识和经济责任意识。
一、要盯紧人员、货物摸排管控不放松 我市疫情防控的关键是“外防输入”,任务就是做好重点地区人员、货物的管控。刚才社区村居防控组对人员摸排管控工作进行了重点部署,各镇街要严格按照工作要求,切实抓好网格化摸排管控,织密织牢疫情防控摸排网。同时要高度重视货物防控工作,各工作组、行业部门和镇街要持续抓好“四个源头”管控,不断加强对境外来人、冷链物品、外来非冷链普通物品、从国内重点地区以及其他地区的来栖返栖人员的管控力度,严格进口冷链食品、非冷链物品预防性消毒和核酸检测,抓好邮政快递疫情防控措施落实,切实做到“人物同防、人物同查、人物同检”,精准有效防范疫情输入风险。这里特别强调几点:①关于既往感染者的规范管理工作。各镇街要从严做好解除居家健康监测不满*个月的既往感染者的摸排工作,务必不漏一人,核酸检测推进组负责做好单人单管核酸检测,及时关注反馈核酸检测结果。②关于居家健康监测人员管控工作。社区村居组牵头,各镇街具体负责,要严格落实“五包一”、上门核酸检测等措施,坚决不能出现因人员看管不到位导致疫情传播风险的问题。③关于进口货物管理。进口货物专班要严格抓好“冷链”“非冷链”两个线条的管理,从严做好报备审批、预防性消毒等措施,规范做好从业人员个人防护,同时要加强桌面推演和实景演练,不断提升应对复杂问题能力。 二、要严格做好社会面管控 从*月*日招远市解除封控到现在已经有近*个月的时间。这是今年以来,继*月份*区疫情、*月份*疫情后,我们经历的常态化时间最长的一次。随之而来是社会面警惕性的放松,特别是部分群众对戴口罩、测温、亮码、扫描场所码的防疫要求又开始懈怠了。大家必须清醒的认识到,疫情还远没有结束,防控一刻都不能放松。各行业主管部门要结合当前疫情防控形势,从严做好社会面管控工作,特别是暑期将至,我们即将迎来大学生返乡、中学生放假等人员返乡潮,社区村居防控组牵头要提前做好意愿返栖人员摸排工作,提前对接落实管控措施。文旅部门要深刻吸取北京天堂超市酒吧事件教训,从严做好KTV、影院等娱乐场所的管控。对于其他门头店、商场超市、农贸市场、农村大集、养老机构、学校、建筑工地等重点场所,各行业主管部门和镇街要切实担负起监管责任和属地责任,从严督促做好各项防控工作,真严、真管确保守牢守好全市疫情防控工作底线。
今年以来,全市上下深刻汲取*事故教训,把安全生产摆在前所未有的重要位置,形成了齐抓共管的工作格局,安全生产形势持续好转、平稳可控,在*市*月份、*月份综合排名分别位列第三、第四,*月份第*周、第*周分别位列各区市第一、第二。成绩只代表过去,安全生产永远在路上,大家要清醒地认识到,我们的安全生产工作,同上级和市委、市政府部署要求相比、同先进地区相比、同本质安全相比,还存在诸多短板和不足。 (一)隐患整改方面。全市累计排查问题隐患*个,完成整改*个,整改率达到*%,其中,应急局牵头的涉氨制冷领域共排查隐患*个,仅整改完成*个,整改率只有*%,在*考评中长期处于红黄牌区。消防救援大队牵头的消防专班排查发现隐患*个,仅整改完成*个,整改率*%,拖了全市后腿。 (二)燃气领域。综合执法局对做好餐饮场所燃气整治工作缺乏统筹谋划,作为我市主城区的翠屏街道和庄园街道,辖区内餐饮经营户数量多,小而分散,人员流动性大,是燃气报警装置和自动切断装置安装的重中之重,但截至目前,仅分别完成了*%和*%,工作推进力度与当前燃气安全形势极不相符。同时,部分商户安全意识淡薄,对液化石油气危害程度认识不足,部分餐饮场所管线混乱,存在软管过长、违规接三通等现象。 (三)涉氨制冷领域。目前,*家涉氨企业除*家关停外,仅有*家改造完毕,*家正在改造中,特别是*镇、*镇,果库存量大,改造进度在全市垫底,*镇*家仅有*家关停,其余*家尚未开始改造,*镇*家均未开始改造。 (四)消防领域。泡沫夹心板建筑整治缓慢,前期排查冷库类、生产经营类、居民生活类泡沫板建筑物*万平方米,目前完成整改*万平方米,仅占总面积的*%,特别是唐家泊镇、寺口镇整改率仅有*%和*%,同时经指挥部督查组检查发现,泡沫夹芯板住人问题层出不穷,前期已经搬离的时常出现反复。住人的合用场所劝离力度小,*家仅劝离*家,占*%,特别是唐家泊镇*家仅劝离*家,庙后镇*家仅劝离*家,严重影响全市进度。
一、加强与供应商沟通,及时做好跟催工作,及时解决问题尤其是按时、按质、按量提供好所需的各种物料。特别是些零星的采购,我们不追货,他们也不发货,所以需要花费大量的时间去沟通。 二、对于一些新的产品,后续的预测量一概不知,对于批量供货的导致外协供应商刚接手做时,货接不上或是供货吃力,没有人能告知此预测?所以要及时做好协调与沟通,工作往前做,提高工作效率。 三、降低采购成本,货比三家,多快好省的采购原则。客户都要求降本,所以采购物美价廉的产品,尤其重要。 四、对于客户指定的产品,新的价格要做一份采购价与客户给定价格比较清单,避免有采购价高于客户价的现象存在。 五、每天写好每天所要做的工作,处理的事,对所做的情况做一总结,对没有处理好的事,紧接处理,做到问题不推迟,尽最快解决。 六、要求仓库做帐很准确。如一个物料有一批电脑账未做,再去查供应商,供应商回复已送到位,导致帐目不准,起不到帐目一目了然的作用。 七、有些采购件,要货很被动,每个物料的采购是否到位都会直接影响到生产。生产缺物料,再查供应商未送,即耽误了生产,操作方式也不对,同时也增加了公司的成本。目前系统中采购合同的录入都为手工录入,系统目前只好x个人用,所以工作量较大。xx能自动生成订单,仓库入帐及时也准确,这样会节约时间,我们查货由被动改主动,效率会提高不少。
我今天讲话的主题是“共建文明校园,共创文明之风”。文明,就是为维系社会正常生活,要求人们共同遵守的最基本的道德规范。换句话说,文明是一个人的立身处世之本。一直以来,“不说脏话”“遵规守纪”“尊重师长”“乐于助人”“文明就餐”“环境卫生”“爱护公物”“穿着校服”被学校反复倡导,文明校园的观念逐渐深入人心。 那么,什么是文明校园呢?从全校出发,全校讲文明,可以通过我们的力量促进社会和谐;从年级出发,全年级讲文明,就是我们年级在学校中的形象体现;从个人出发,这体现了我们尊重、理解、谦让、善良等品质。 文明意义何在?对个人而言,文明与否体现一个人的素质水平,为人文明可以品味君子之乐,获取他人尊重,成就自己,成就学业;对校园而言,文明校园能使校园氛围和谐;对社会而言,文明更是蕴藏在众人心中的精神伟力。“在文明的路上,没有人能置身事外”,很多时候,能不能、会不会对不文明行为说不,考验个人的文明素养,反映社会的文明水平。 从古至今,不乏有崇尚校园文明、践行校园文明的典范。杏坛讲学孔子三千弟子七十二贤人克己复礼、见贤思齐是尊崇校园文明的佳话;宋代大儒程门立雪是尊师重道的榜样;毛泽东同志在湖南省立第一师范学校读书时与同学们一起创立《湘江评论》,以勇立时代潮头,引领时代和改造世界为己任,更是青少年的楷模。由此可见,小到教室的清洁、求学交友,大到修身齐家治国平天下,都是校园文明不可或缺的一部分。唯有把校园文明内化于心,外化于行,才造就了一个和谐的校园、社会、国家乃至世界。
初一四班是一个快乐的班集体。在我们敬爱的关老师的带领下,同学们团结友爱,努力进取,关老师每天细心呵护着我们,快乐的笑声总是从我们班传出。拔河比赛时,大家齐心协力、不甘落后。班主任亲自为我们加油鼓气,呐喊声震耳欲聋。黄河滩野炊,大家都展示出自己的绝妙厨艺!虽然大家被呛得直流眼泪,但是脸上却洋溢着快乐的笑容。段会上,同学们个个腰杆笔直、聚精会神,认真听段长讲话。我们班的老师是个奇特的组合,三个人的姓氏恰是桃园三结义的刘关张!我们的数学老师刘老师是一个年龄很大,教学经验丰富的老师,数学教得很好,总是帮我们解决一个个难题。我们的班主任关老师做事认真且富有效率,我们和她在一起无话不谈,她更像我们的知心朋友。我们的英语张老师幽默富有情趣,总能让课堂活跃起来!课堂上,同学们都高高的举起手,我字当头显自信,从远处看,好像一片小竹林!
课程分析中专数学课程教学是专业建设与专业课程体系改革的一部分,应与专业课教学融为一体,立足于为专业课服务,解决实际生活中常见问题,结合中专学生的实际,强调数学的应用性,以满足学生在今后的工作岗位上的实际应用为主,这也体现了新课标中突出应用性的理念。分段函数的实际应用在本课程中的地位:(1) 函数是中专数学学习的重点和难点,函数的思想贯穿于整个中专数学之中,分段函数在科技和生活的各个领域有着十分广泛的应用。(2) 本节所探讨学习分段函数在生活生产中的实际问题上应用,培养学生分析与解决问题的能力,养成正确的数学化理性思维的同时,形成一种意识,即数学“源于生活、寓于生活、用于生活”。教材分析 教材使用的是中等职业教育课程改革国家规划教材,依照13级教学计划,函数的实际应用举例内容安排在第三章函数的最后一部分讲解。本节内容是在学生熟知函数的概念,表示方法和对函数性质有一定了解的基础上研究分段函数,同时深化学生对函数概念的理解和认识,也为接下来学习指数函数和对数函数作了良好铺垫。根据13级学生实际情况,由生活生产中的实际问题入手,求得分段函数此部分知识以学生生活常识为背景,可以引导学生分析得出。
反思感悟用基底表示空间向量的解题策略1.空间中,任一向量都可以用一个基底表示,且只要基底确定,则表示形式是唯一的.2.用基底表示空间向量时,一般要结合图形,运用向量加法、减法的平行四边形法则、三角形法则,以及数乘向量的运算法则,逐步向基向量过渡,直至全部用基向量表示.3.在空间几何体中选择基底时,通常选取公共起点最集中的向量或关系最明确的向量作为基底,例如,在正方体、长方体、平行六面体、四面体中,一般选用从同一顶点出发的三条棱所对应的向量作为基底.例2.在棱长为2的正方体ABCD-A1B1C1D1中,E,F分别是DD1,BD的中点,点G在棱CD上,且CG=1/3 CD(1)证明:EF⊥B1C;(2)求EF与C1G所成角的余弦值.思路分析选择一个空间基底,将(EF) ?,(B_1 C) ?,(C_1 G) ?用基向量表示.(1)证明(EF) ?·(B_1 C) ?=0即可;(2)求(EF) ?与(C_1 G) ?夹角的余弦值即可.(1)证明:设(DA) ?=i,(DC) ?=j,(DD_1 ) ?=k,则{i,j,k}构成空间的一个正交基底.
4.已知△ABC三个顶点坐标A(-1,3),B(-3,0),C(1,2),求△ABC的面积S.【解析】由直线方程的两点式得直线BC的方程为 = ,即x-2y+3=0,由两点间距离公式得|BC|= ,点A到BC的距离为d,即为BC边上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面积为4.5.已知直线l经过点P(0,2),且A(1,1),B(-3,1)两点到直线l的距离相等,求直线l的方程.解:(方法一)∵点A(1,1)与B(-3,1)到y轴的距离不相等,∴直线l的斜率存在,设为k.又直线l在y轴上的截距为2,则直线l的方程为y=kx+2,即kx-y+2=0.由点A(1,1)与B(-3,1)到直线l的距离相等,∴直线l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)当直线l过线段AB的中点时,A,B两点到直线l的距离相等.∵AB的中点是(-1,1),又直线l过点P(0,2),∴直线l的方程是x-y+2=0.当直线l∥AB时,A,B两点到直线l的距离相等.∵直线AB的斜率为0,∴直线l的斜率为0,∴直线l的方程为y=2.综上所述,满足条件的直线l的方程是x-y+2=0或y=2.
一、情境导学在一条笔直的公路同侧有两个大型小区,现在计划在公路上某处建一个公交站点C,以方便居住在两个小区住户的出行.如何选址能使站点到两个小区的距离之和最小?二、探究新知问题1.在数轴上已知两点A、B,如何求A、B两点间的距离?提示:|AB|=|xA-xB|.问题2:在平面直角坐标系中能否利用数轴上两点间的距离求出任意两点间距离?探究.当x1≠x2,y1≠y2时,|P1P2|=?请简单说明理由.提示:可以,构造直角三角形利用勾股定理求解.答案:如图,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即两点P1(x1,y1),P2(x2,y2)间的距离|P1P2|=?x2-x1?2+?y2-y1?2.你还能用其它方法证明这个公式吗?2.两点间距离公式的理解(1)此公式与两点的先后顺序无关,也就是说公式也可写成|P1P2|=?x2-x1?2+?y2-y1?2.(2)当直线P1P2平行于x轴时,|P1P2|=|x2-x1|.当直线P1P2平行于y轴时,|P1P2|=|y2-y1|.
(2)l的倾斜角为90°,即l平行于y轴,所以m+1=2m,得m=1.延伸探究1 本例条件不变,试求直线l的倾斜角为锐角时实数m的取值范围.解:由题意知(m"-" 1"-" 1)/(m+1"-" 2m)>0,解得1<m<2.延伸探究2 若将本例中的“N(2m,1)”改为“N(3m,2m)”,其他条件不变,结果如何?解:(1)由题意知(m"-" 1"-" 2m)/(m+1"-" 3m)=1,解得m=2.(2)由题意知m+1=3m,解得m=1/2.直线斜率的计算方法(1)判断两点的横坐标是否相等,若相等,则直线的斜率不存在.(2)若两点的横坐标不相等,则可以用斜率公式k=(y_2 "-" y_1)/(x_2 "-" x_1 )(其中x1≠x2)进行计算.金题典例 光线从点A(2,1)射到y轴上的点Q,经y轴反射后过点B(4,3),试求点Q的坐标及入射光线的斜率.解:(方法1)设Q(0,y),则由题意得kQA=-kQB.∵kQA=(1"-" y)/2,kQB=(3"-" y)/4,∴(1"-" y)/2=-(3"-" y)/4.解得y=5/3,即点Q的坐标为 0,5/3 ,∴k入=kQA=(1"-" y)/2=-1/3.(方法2)设Q(0,y),如图,点B(4,3)关于y轴的对称点为B'(-4,3), kAB'=(1"-" 3)/(2+4)=-1/3,由题意得,A、Q、B'三点共线.从而入射光线的斜率为kAQ=kAB'=-1/3.所以,有(1"-" y)/2=(1"-" 3)/(2+4),解得y=5/3,点Q的坐标为(0,5/3).
一、情境导学前面我们已经得到了两点间的距离公式,点到直线的距离公式,关于平面上的距离问题,两条直线间的距离也是值得研究的。思考1:立定跳远测量的什么距离?A.两平行线的距离 B.点到直线的距离 C. 点到点的距离二、探究新知思考2:已知两条平行直线l_1,l_2的方程,如何求l_1 〖与l〗_2间的距离?根据两条平行直线间距离的含义,在直线l_1上取任一点P(x_0,y_0 ),,点P(x_0,y_0 )到直线l_2的距离就是直线l_1与直线l_2间的距离,这样求两条平行线间的距离就转化为求点到直线的距离。两条平行直线间的距离1. 定义:夹在两平行线间的__________的长.公垂线段2. 图示: 3. 求法:转化为点到直线的距离.1.原点到直线x+2y-5=0的距离是( )A.2 B.3 C.2 D.5D [d=|-5|12+22=5.选D.]
1.直线2x+y+8=0和直线x+y-1=0的交点坐标是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程组{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交点坐标是(-9,10).答案:B 2.直线2x+3y-k=0和直线x-ky+12=0的交点在x轴上,则k的值为( )A.-24 B.24 C.6 D.± 6解析:∵直线2x+3y-k=0和直线x-ky+12=0的交点在x轴上,可设交点坐标为(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故选A.答案:A 3.已知直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,若l1⊥l2,则点P的坐标为 . 解析:∵直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,联立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴点P的坐标为(3,3).答案:(3,3) 4.求证:不论m为何值,直线(m-1)x+(2m-1)y=m-5都通过一定点. 证明:将原方程按m的降幂排列,整理得(x+2y-1)m-(x+y-5)=0,此式对于m的任意实数值都成立,根据恒等式的要求,m的一次项系数与常数项均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤
(1)几何法它是利用图形的几何性质,如圆的性质等,直接求出圆的圆心和半径,代入圆的标准方程,从而得到圆的标准方程.(2)待定系数法由三个独立条件得到三个方程,解方程组以得到圆的标准方程中三个参数,从而确定圆的标准方程.它是求圆的方程最常用的方法,一般步骤是:①设——设所求圆的方程为(x-a)2+(y-b)2=r2;②列——由已知条件,建立关于a,b,r的方程组;③解——解方程组,求出a,b,r;④代——将a,b,r代入所设方程,得所求圆的方程.跟踪训练1.已知△ABC的三个顶点坐标分别为A(0,5),B(1,-2),C(-3,-4),求该三角形的外接圆的方程.[解] 法一:设所求圆的标准方程为(x-a)2+(y-b)2=r2.因为A(0,5),B(1,-2),C(-3,-4)都在圆上,所以它们的坐标都满足圆的标准方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圆的标准方程是(x+3)2+(y-1)2=25.
情境导学前面我们已讨论了圆的标准方程为(x-a)2+(y-b)2=r2,现将其展开可得:x2+y2-2ax-2bx+a2+b2-r2=0.可见,任何一个圆的方程都可以变形x2+y2+Dx+Ey+F=0的形式.请大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲线是不是圆?下面我们来探讨这一方面的问题.探究新知例如,对于方程x^2+y^2-2x-4y+6=0,对其进行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因为任意一点的坐标 (x,y) 都不满足这个方程,所以这个方程不表示任何图形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通过恒等变换为圆的标准方程,这表明形如x2+y2+Dx+Ey+F=0的方程不一定是圆的方程.一、圆的一般方程(1)当D2+E2-4F>0时,方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)为圆心,1/2 √(D^2+E^2 "-" 4F)为半径的圆,将方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)当D2+E2-4F=0时,方程x2+y2+Dx+Ey+F=0,表示一个点(-D/2,-E/2)(3)当D2+E2-4F0);