高斯(Gauss,1777-1855),德国数学家,近代数学的奠基者之一. 他在天文学、大地测量学、磁学、光学等领域都做出过杰出贡献. 问题1:为什么1+100=2+99=…=50+51呢?这是巧合吗?试从数列角度给出解释.高斯的算法:(1+100)+(2+99)+…+(50+51)= 101×50=5050高斯的算法实际上解决了求等差数列:1,2,3,…,n,"… " 前100项的和问题.等差数列中,下标和相等的两项和相等.设 an=n,则 a1=1,a2=2,a3=3,…如果数列{an} 是等差数列,p,q,s,t∈N*,且 p+q=s+t,则 ap+aq=as+at 可得:a_1+a_100=a_2+a_99=?=a_50+a_51问题2: 你能用上述方法计算1+2+3+… +101吗?问题3: 你能计算1+2+3+… +n吗?需要对项数的奇偶进行分类讨论.当n为偶数时, S_n=(1+n)+[(2+(n-1)]+?+[(n/2+(n/2-1)]=(1+n)+(1+n)…+(1+n)=n/2 (1+n) =(n(1+n))/2当n为奇数数时, n-1为偶数
求函数的导数的策略(1)先区分函数的运算特点,即函数的和、差、积、商,再根据导数的运算法则求导数;(2)对于三个以上函数的积、商的导数,依次转化为“两个”函数的积、商的导数计算.跟踪训练1 求下列函数的导数:(1)y=x2+log3x; (2)y=x3·ex; (3)y=cos xx.[解] (1)y′=(x2+log3x)′=(x2)′+(log3x)′=2x+1xln 3.(2)y′=(x3·ex)′=(x3)′·ex+x3·(ex)′=3x2·ex+x3·ex=ex(x3+3x2).(3)y′=cos xx′=?cos x?′·x-cos x·?x?′x2=-x·sin x-cos xx2=-xsin x+cos xx2.跟踪训练2 求下列函数的导数(1)y=tan x; (2)y=2sin x2cos x2解析:(1)y=tan x=sin xcos x,故y′=?sin x?′cos x-?cos x?′sin x?cos x?2=cos2x+sin2xcos2x=1cos2x.(2)y=2sin x2cos x2=sin x,故y′=cos x.例5 日常生活中的饮用水通常是经过净化的,随着水的纯净度的提高,所需进化费用不断增加,已知将1t水进化到纯净度为x%所需费用(单位:元),为c(x)=5284/(100-x) (80<x<100)求进化到下列纯净度时,所需进化费用的瞬时变化率:(1) 90% ;(2) 98%解:净化费用的瞬时变化率就是净化费用函数的导数;c^' (x)=〖(5284/(100-x))〗^'=(5284^’×(100-x)-"5284 " 〖(100-x)〗^’)/〖(100-x)〗^2 =(0×(100-x)-"5284 " ×(-1))/〖(100-x)〗^2 ="5284 " /〖(100-x)〗^2
新知探究前面我们研究了两类变化率问题:一类是物理学中的问题,涉及平均速度和瞬时速度;另一类是几何学中的问题,涉及割线斜率和切线斜率。这两类问题来自不同的学科领域,但在解决问题时,都采用了由“平均变化率”逼近“瞬时变化率”的思想方法;问题的答案也是一样的表示形式。下面我们用上述思想方法研究更一般的问题。探究1: 对于函数y=f(x) ,设自变量x从x_0变化到x_0+ ?x ,相应地,函数值y就从f(x_0)变化到f(〖x+x〗_0) 。这时, x的变化量为?x,y的变化量为?y=f(x_0+?x)-f(x_0)我们把比值?y/?x,即?y/?x=(f(x_0+?x)-f(x_0)" " )/?x叫做函数从x_0到x_0+?x的平均变化率。1.导数的概念如果当Δx→0时,平均变化率ΔyΔx无限趋近于一个确定的值,即ΔyΔx有极限,则称y=f (x)在x=x0处____,并把这个________叫做y=f (x)在x=x0处的导数(也称为__________),记作f ′(x0)或________,即
二、典例解析例4. 用 10 000元购买某个理财产品一年.(1)若以月利率0.400%的复利计息,12个月能获得多少利息(精确到1元)?(2)若以季度复利计息,存4个季度,则当每季度利率为多少时,按季结算的利息不少于按月结算的利息(精确到10^(-5))?分析:复利是指把前一期的利息与本金之和算作本金,再计算下一期的利息.所以若原始本金为a元,每期的利率为r ,则从第一期开始,各期的本利和a , a(1+r),a(1+r)^2…构成等比数列.解:(1)设这笔钱存 n 个月以后的本利和组成一个数列{a_n },则{a_n }是等比数列,首项a_1=10^4 (1+0.400%),公比 q=1+0.400%,所以a_12=a_1 q^11 〖=10〗^4 (1+0.400%)^12≈10 490.7.所以,12个月后的利息为10 490.7-10^4≈491(元).解:(2)设季度利率为 r ,这笔钱存 n 个季度以后的本利和组成一个数列{b_n },则{b_n }也是一个等比数列,首项 b_1=10^4 (1+r),公比为1+r,于是 b_4=10^4 (1+r)^4.
新知探究国际象棋起源于古代印度.相传国王要奖赏国际象棋的发明者,问他想要什么.发明者说:“请在棋盘的第1个格子里放上1颗麦粒,第2个格子里放上2颗麦粒,第3个格子里放上4颗麦粒,依次类推,每个格子里放的麦粒都是前一个格子里放的麦粒数的2倍,直到第64个格子.请给我足够的麦粒以实现上述要求.”国王觉得这个要求不高,就欣然同意了.假定千粒麦粒的质量为40克,据查,2016--2017年度世界年度小麦产量约为7.5亿吨,根据以上数据,判断国王是否能实现他的诺言.问题1:每个格子里放的麦粒数可以构成一个数列,请判断分析这个数列是否是等比数列?并写出这个等比数列的通项公式.是等比数列,首项是1,公比是2,共64项. 通项公式为〖a_n=2〗^(n-1)问题2:请将发明者的要求表述成数学问题.
我们知道数列是一种特殊的函数,在函数的研究中,我们在理解了函数的一般概念,了解了函数变化规律的研究内容(如单调性,奇偶性等)后,通过研究基本初等函数不仅加深了对函数的理解,而且掌握了幂函数,指数函数,对数函数,三角函数等非常有用的函数模型。类似地,在了解了数列的一般概念后,我们要研究一些具有特殊变化规律的数列,建立它们的通项公式和前n项和公式,并应用它们解决实际问题和数学问题,从中感受数学模型的现实意义与应用,下面,我们从一类取值规律比较简单的数列入手。新知探究1.北京天坛圜丘坛,的地面有十板布置,最中间是圆形的天心石,围绕天心石的是9圈扇环形的石板,从内到外各圈的示板数依次为9,18,27,36,45,54,63,72,81 ①2.S,M,L,XL,XXL,XXXL型号的女装上对应的尺码分别是38,40,42,44,46,48 ②3.测量某地垂直地面方向上海拔500米以下的大气温度,得到从距离地面20米起每升高100米处的大气温度(单位℃)依次为25,24,23,22,21 ③
二、典例解析例3.某公司购置了一台价值为220万元的设备,随着设备在使用过程中老化,其价值会逐年减少.经验表明,每经过一年其价值会减少d(d为正常数)万元.已知这台设备的使用年限为10年,超过10年 ,它的价值将低于购进价值的5%,设备将报废.请确定d的范围.分析:该设备使用n年后的价值构成数列{an},由题意可知,an=an-1-d (n≥2). 即:an-an-1=-d.所以{an}为公差为-d的等差数列.10年之内(含10年),该设备的价值不小于(220×5%=)11万元;10年后,该设备的价值需小于11万元.利用{an}的通项公式列不等式求解.解:设使用n年后,这台设备的价值为an万元,则可得数列{an}.由已知条件,得an=an-1-d(n≥2).所以数列{an}是一个公差为-d的等差数列.因为a1=220-d,所以an=220-d+(n-1)(-d)=220-nd. 由题意,得a10≥11,a11<11. 即:{█("220-10d≥11" @"220-11d<11" )┤解得19<d≤20.9所以,d的求值范围为19<d≤20.9
二、典例解析例10. 如图,正方形ABCD 的边长为5cm ,取正方形ABCD 各边的中点E,F,G,H, 作第2个正方形 EFGH,然后再取正方形EFGH各边的中点I,J,K,L,作第3个正方形IJKL ,依此方法一直继续下去. (1) 求从正方形ABCD 开始,连续10个正方形的面积之和;(2) 如果这个作图过程可以一直继续下去,那么所有这些正方形的面积之和将趋近于多少?分析:可以利用数列表示各正方形的面积,根据条件可知,这是一个等比数列。解:设正方形的面积为a_1,后续各正方形的面积依次为a_2, a_(3, ) 〖…,a〗_n,…,则a_1=25,由于第k+1个正方形的顶点分别是第k个正方形各边的中点,所以a_(k+1)=〖1/2 a〗_k,因此{a_n},是以25为首项,1/2为公比的等比数列.设{a_n}的前项和为S_n(1)S_10=(25×[1-(1/2)^10 ] )/("1 " -1/2)=50×[1-(1/2)^10 ]=25575/512所以,前10个正方形的面积之和为25575/512cm^2.(2)当无限增大时,无限趋近于所有正方形的面积和
情景导学古语云:“勤学如春起之苗,不见其增,日有所长”如果对“春起之苗”每日用精密仪器度量,则每日的高度值按日期排在一起,可组成一个数列. 那么什么叫数列呢?二、问题探究1. 王芳从一岁到17岁,每年生日那天测量身高,将这些身高数据(单位:厘米)依次排成一列数:75,87,96,103,110,116,120,128,138,145,153,158,160,162,163,165,168 ①记王芳第i岁的身高为 h_i ,那么h_1=75 , h_2=87, 〖"…" ,h〗_17=168.我们发现h_i中的i反映了身高按岁数从1到17的顺序排列时的确定位置,即h_1=75 是排在第1位的数,h_2=87是排在第2位的数〖"…" ,h〗_17 =168是排在第17位的数,它们之间不能交换位置,所以①具有确定顺序的一列数。2. 在两河流域发掘的一块泥板(编号K90,约生产于公元前7世纪)上,有一列依次表示一个月中从第1天到第15天,每天月亮可见部分的数:5,10,20,40,80,96,112,128,144,160,176,192,208,224,240. ②
课前小测1.思考辨析(1)若Sn为等差数列{an}的前n项和,则数列Snn也是等差数列.( )(2)若a1>0,d<0,则等差数列中所有正项之和最大.( )(3)在等差数列中,Sn是其前n项和,则有S2n-1=(2n-1)an.( )[答案] (1)√ (2)√ (3)√2.在项数为2n+1的等差数列中,所有奇数项的和为165,所有偶数项的和为150,则n等于( )A.9 B.10 C.11 D.12B [∵S奇S偶=n+1n,∴165150=n+1n.∴n=10.故选B项.]3.等差数列{an}中,S2=4,S4=9,则S6=________.15 [由S2,S4-S2,S6-S4成等差数列得2(S4-S2)=S2+(S6-S4)解得S6=15.]4.已知数列{an}的通项公式是an=2n-48,则Sn取得最小值时,n为________.23或24 [由an≤0即2n-48≤0得n≤24.∴所有负项的和最小,即n=23或24.]二、典例解析例8.某校新建一个报告厅,要求容纳800个座位,报告厅共有20排座位,从第2排起后一排都比前一排多两个座位. 问第1排应安排多少个座位?分析:将第1排到第20排的座位数依次排成一列,构成数列{an} ,设数列{an} 的前n项和为S_n。
1.判断正误(正确的打“√”,错误的打“×”)(1)函数f (x)在区间(a,b)上都有f ′(x)<0,则函数f (x)在这个区间上单调递减. ( )(2)函数在某一点的导数越大,函数在该点处的切线越“陡峭”. ( )(3)函数在某个区间上变化越快,函数在这个区间上导数的绝对值越大.( )(4)判断函数单调性时,在区间内的个别点f ′(x)=0,不影响函数在此区间的单调性.( )[解析] (1)√ 函数f (x)在区间(a,b)上都有f ′(x)<0,所以函数f (x)在这个区间上单调递减,故正确.(2)× 切线的“陡峭”程度与|f ′(x)|的大小有关,故错误.(3)√ 函数在某个区间上变化的快慢,和函数导数的绝对值大小一致.(4)√ 若f ′(x)≥0(≤0),则函数f (x)在区间内单调递增(减),故f ′(x)=0不影响函数单调性.[答案] (1)√ (2)× (3)√ (4)√例1. 利用导数判断下列函数的单调性:(1)f(x)=x^3+3x; (2) f(x)=sinx-x,x∈(0,π); (3)f(x)=(x-1)/x解: (1) 因为f(x)=x^3+3x, 所以f^' (x)=〖3x〗^2+3=3(x^2+1)>0所以f(x)=x^3+3x ,函数在R上单调递增,如图(1)所示
1.对称性与首末两端“等距离”的两个二项式系数相等,即C_n^m=C_n^(n"-" m).2.增减性与最大值 当k(n+1)/2时,C_n^k随k的增加而减小.当n是偶数时,中间的一项C_n^(n/2)取得最大值;当n是奇数时,中间的两项C_n^((n"-" 1)/2) 与C_n^((n+1)/2)相等,且同时取得最大值.探究2.已知(1+x)^n =C_n^0+C_n^1 x+...〖+C〗_n^k x^k+...+C_n^n x^n 3.各二项式系数的和C_n^0+C_n^1+C_n^2+…+C_n^n=2n.令x=1 得(1+1)^n=C_n^0+C_n^1 +...+C_n^n=2^n所以,(a+b)^n 的展开式的各二项式系数之和为2^n1. 在(a+b)8的展开式中,二项式系数最大的项为 ,在(a+b)9的展开式中,二项式系数最大的项为 . 解析:因为(a+b)8的展开式中有9项,所以中间一项的二项式系数最大,该项为C_8^4a4b4=70a4b4.因为(a+b)9的展开式中有10项,所以中间两项的二项式系数最大,这两项分别为C_9^4a5b4=126a5b4,C_9^5a4b5=126a4b5.答案:1.70a4b4 126a5b4与126a4b5 2. A=C_n^0+C_n^2+C_n^4+…与B=C_n^1+C_n^3+C_n^5+…的大小关系是( )A.A>B B.A=B C.A<B D.不确定 解析:∵(1+1)n=C_n^0+C_n^1+C_n^2+…+C_n^n=2n,(1-1)n=C_n^0-C_n^1+C_n^2-…+(-1)nC_n^n=0,∴C_n^0+C_n^2+C_n^4+…=C_n^1+C_n^3+C_n^5+…=2n-1,即A=B.答案:B
七、教学过程(一)、创设情境,引入新授师:同学们,开学快两个月了,你们跟老师在一起开心吗?(开心)师:我也非常地开心,做梦都想跟你们在一起。昨天晚上,老师做了一个美梦,你们想和老师一起分享吗?(想!)老师梦见,在一个阳光明媚的日子里,老师跟你们一起乘坐热汽球飘到了南极!一到南极,你们跟老师一样,都兴奋极了。知道为什么吗?因为在那里,我们看到了许多可爱的企鹅(板书课题:可爱的企鹅)。你们拼命地召唤企鹅,想和企鹅交朋友。可企鹅们没有马上答应,而是要我们共同努力,答对了它们的问题才跟我们交朋友!你们有信心答对吗?(有!)一起同游,更消除了师生之间的隔膜,上课的气氛会更融洽。培养学生的团队合作精神和与人交流的能力;体验与人合作、交流的快乐;培养学生不怕困难,勇于探索的信心和勇气。
一、说教材:教学内容:课本第14-15页教材简析:《快乐的午餐》这节内容是在对数的含义有了初步的感知,并且在生活中已经积累了一些感性经验之后进行学习的。这一内容的学习也是为下一节学习数的大小的比较打基础的。教学利用情境图,激发学生学习兴趣,并培养学生的观察能力以及语言表达能力,同对学生进行思想品德教育。二、说学生一年级学生的生活语言较丰富,但缺乏数学语言;他们思维活跃,敢于暴露自己的思维过程和结果。小学生好动,思维持久性差,也就是有意注意处于不稳定状态。一年级学生在生活中已经积累了一些感性经验,比如吃饭时发餐具。一年级学生喜欢接触有明亮色彩的,多动,喜欢新鲜事物。所以学习资料最好有图片/插图,声音/歌曲。要寓教于乐,教学方式要多样,在游戏中增长知识是最好的方法。因此,我制定了以下教学目标.
(1)思考并回答:对比同一个动物园两张照片,你发现了什么?为什么会有这么大的变化呢?(2)提出数学问题。2.自主探究,合作交流。(1)学生独立计算。(2)四人小组内交流算法。(3)全班汇报。学生可能出现以下几种计算方法:口算数线在计数器上拨珠计算。尝试列竖式的方法计算。(小老师板书,讲解)4.小狮子先知道用竖式计算三位数加法时要注意哪些方面的问题,你愿意告诉它吗?5..师:今天我们学习的就是三位数加法的计算方法。(补充课题)6..趣味练习,评选动物园环保之家(板演)(三)联系实际,巩固应用这一环节设计了“帮森林医生啄木鸟找对错”,“比一比谁做得又对又快”两个环节,目的是为了对今天学习的连续进位的加法进行巩固练习。(四)全课总结,畅谈收获
第二题先让学生说说规律,有一些学生一开始找不到规律,我就提示孩子把第一个数字盖上再看,这样孩子就能很快找到规律了。说明有时候不是整体重复而是一部分,高年级学的循环小数就是这样。第3小题是4个数字重复,大部分学生可以迅速找出重复的规律。3、会场一共排了10个灯笼,请问大灯笼有几个?小灯笼有几个?如果有15个呢?10÷2=5(组)答:大灯笼有5个,小灯笼有5个。这里要说明为什么要除以2,因为是两个一组。15÷2=7(组)……1(个)7+1=8(个)答:大灯笼有8个,小灯笼有7个。这里让学生说说余的1表示什么意思?表示一组的第一个。四、小小设计师用这节课学习的“重复”的规律设计一副简单又漂亮的图案。学生独立设计,然后上台展示。五、总结:今天你学到了什么?这节课我就说到这里,请各位老师提出宝贵意见。谢谢!
(二)教材分析学生在此之前,已经学习了20以内各数的认识及比较大小,这为过度到本节的学习起着铺垫作用。32页百数表格图有助于学生形成初步的数感,“做一做”可以帮助学生进一步巩固比较两个两位数大小的方法。(三)教学目标知识目标:结合具体情境进一步体会数位的意义,以及100以内数的顺序,会比较100以内数的大小。能力目标:在观察、操作、比较的活动过程中,培养学生观察、思考的能力。情感目标:进一步积累比较数的大小的经验,发展数感。(四)教学重点、难点:重点:掌握100以内数的大小比较的方法.难点:掌握比较数的大小的方法。二、教学流程(一)猜数游戏,激发兴趣老师很想知道大家的年龄,谁愿意告诉老师?学生纷纷举手,我要猜出你们的年龄。请一名学生上台,把自己的年龄写在黑板上,老师背对黑板,面向学生猜年龄。请你们帮老师提示一下,我猜的是大了还是小了。猜数游戏为本节课的学习激发兴趣。
一、说教材教材分析:《快乐的动物》一课是北师大版小学数学第三册46-47页上的内容。本节课是学生接触“倍”的概念的第一课。对于低年级的孩子来说“倍”这个概念是比较抽象的,但却非常重要。记得去年教二年级的时候,这块内容学生掌握得不是很好,在复习时,学生对倍的概念比较模糊,不知道什么时候该用乘法,什么时候该用除法,所以上这一课时应该特别认真。从教材编写体系看:教材首先展示了一幅春天动物王国欢聚图的情景,图中蕴含着各种动物的数量以及数量之间的关系。其次,是编排了“做一做”、“说一说”的内容。其目的是让学生在具体的活动中,感受“倍”的含义,使学生逐步体会与等分之间的关系。求倍数的关系,涉及两个量之间的比较,实际上是等分活动的扩展。教材“说一说”中的第三个小问题:“你还能提出哪些用除法解决的问题?”给学生创设了充分的观察、探究、体验、交往的空间。这是本节教材的一个特色。“倍”是生活用语,
第三个环节是:综合实践,学以致用由于我班的同学都在学校吃早餐,可食堂的工人师傅们并不知道同学们最喜欢吃什么样的早餐,所以有时侯做了同学们都不喜欢吃的饭菜时,就会剩下很多,造成很大的浪费。怎样来解决这个浪费的问题呢?由此引导学生说出可以利用刚才学到的统计知识统计出同学们最喜欢的早餐。2、教师给每小组发一张早餐统计图,让学生在喜欢的早餐上画三角符号,由小组组长将本组的统计结果贴在黑板上,然后集体填写全班学生喜欢的早餐统计图和统计表。看着这张统计图和统计表请学生说说你想对食堂的管理人员提点什么建议?希望他们怎么做?第四个环节是:学生回顾,教师小结小朋友们,学了这节课你们知道要比较东西的多少的时候,画什么图比较好啊?(统计图)那在画统计图时要注意些什么呀?(先把东西分一分,再摆一摆,摆的时候注意要把东西摆放整齐)
3、情感目标:通过长方形和正方形周长计算公式的推导过程,培养学生的探索精神和合作精神。三、说教学重点、难点、关键点。本着课程标准,我在认识了本节课教材在整个知识结构中所处的地位,考虑学生认知情况的基础上,我确立了如下教学重点、难点、关键点。教学重点:推导、归纳长方形和正方形周长的计算公式。教学难点:理解并掌握长方形、正方形周长的计算方法。教学关键点:让学生在自己的计算和解决问题的过程中体会和理解算法。四、说教法。依据学生的认知规律,本节课的教学方法中力求体现以下几个方面的理念:从学生爱听的故事出发,为学生创设探究学习的情景;联系生活实际,让学生体会数学与生活的联系;改变学生的学习方式,运用合作学习,培养学生的协作能力;主要采用:创设情境引入新课、师生互动探讨新知、引导学生总结、点拨学生迷惑等教学方法。