解析:当a0时,直线ax-by=1在x轴上的截距1/a0,在y轴上的截距-1/a>0.只有B满足.故选B.答案:B 3.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:设所求直线方程为x-2y+c=0,把点(1,0)代入可求得c=-1.所以所求直线方程为x-2y-1=0.故选A.4.已知两条直线y=ax-2和3x-(a+2)y+1=0互相平行,则a=________.答案:1或-3 解析:依题意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直线.(1)求实数m的范围;(2)若该直线的斜率k=1,求实数m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直线,则m2-3m+2与m-2不能同时为0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.
课前小测1.思考辨析(1)若Sn为等差数列{an}的前n项和,则数列Snn也是等差数列.( )(2)若a1>0,d<0,则等差数列中所有正项之和最大.( )(3)在等差数列中,Sn是其前n项和,则有S2n-1=(2n-1)an.( )[答案] (1)√ (2)√ (3)√2.在项数为2n+1的等差数列中,所有奇数项的和为165,所有偶数项的和为150,则n等于( )A.9 B.10 C.11 D.12B [∵S奇S偶=n+1n,∴165150=n+1n.∴n=10.故选B项.]3.等差数列{an}中,S2=4,S4=9,则S6=________.15 [由S2,S4-S2,S6-S4成等差数列得2(S4-S2)=S2+(S6-S4)解得S6=15.]4.已知数列{an}的通项公式是an=2n-48,则Sn取得最小值时,n为________.23或24 [由an≤0即2n-48≤0得n≤24.∴所有负项的和最小,即n=23或24.]二、典例解析例8.某校新建一个报告厅,要求容纳800个座位,报告厅共有20排座位,从第2排起后一排都比前一排多两个座位. 问第1排应安排多少个座位?分析:将第1排到第20排的座位数依次排成一列,构成数列{an} ,设数列{an} 的前n项和为S_n。
1.判断正误(正确的打“√”,错误的打“×”)(1)函数f (x)在区间(a,b)上都有f ′(x)<0,则函数f (x)在这个区间上单调递减. ( )(2)函数在某一点的导数越大,函数在该点处的切线越“陡峭”. ( )(3)函数在某个区间上变化越快,函数在这个区间上导数的绝对值越大.( )(4)判断函数单调性时,在区间内的个别点f ′(x)=0,不影响函数在此区间的单调性.( )[解析] (1)√ 函数f (x)在区间(a,b)上都有f ′(x)<0,所以函数f (x)在这个区间上单调递减,故正确.(2)× 切线的“陡峭”程度与|f ′(x)|的大小有关,故错误.(3)√ 函数在某个区间上变化的快慢,和函数导数的绝对值大小一致.(4)√ 若f ′(x)≥0(≤0),则函数f (x)在区间内单调递增(减),故f ′(x)=0不影响函数单调性.[答案] (1)√ (2)× (3)√ (4)√例1. 利用导数判断下列函数的单调性:(1)f(x)=x^3+3x; (2) f(x)=sinx-x,x∈(0,π); (3)f(x)=(x-1)/x解: (1) 因为f(x)=x^3+3x, 所以f^' (x)=〖3x〗^2+3=3(x^2+1)>0所以f(x)=x^3+3x ,函数在R上单调递增,如图(1)所示
一、 问题导学前面两节所讨论的变量,如人的身高、树的胸径、树的高度、短跑100m世界纪录和创纪录的时间等,都是数值变量,数值变量的取值为实数.其大小和运算都有实际含义.在现实生活中,人们经常需要回答一定范围内的两种现象或性质之间是否存在关联性或相互影响的问题.例如,就读不同学校是否对学生的成绩有影响,不同班级学生用于体育锻炼的时间是否有差别,吸烟是否会增加患肺癌的风险,等等,本节将要学习的独立性检验方法为我们提供了解决这类问题的方案。在讨论上述问题时,为了表述方便,我们经常会使用一种特殊的随机变量,以区别不同的现象或性质,这类随机变量称为分类变量.分类变量的取值可以用实数表示,例如,学生所在的班级可以用1,2,3等表示,男性、女性可以用1,0表示,等等.在很多时候,这些数值只作为编号使用,并没有通常的大小和运算意义,本节我们主要讨论取值于{0,1}的分类变量的关联性问题.
温故知新 1.离散型随机变量的定义可能取值为有限个或可以一一列举的随机变量,我们称为离散型随机变量.通常用大写英文字母表示随机变量,例如X,Y,Z;用小写英文字母表示随机变量的取值,例如x,y,z.随机变量的特点: 试验之前可以判断其可能出现的所有值,在试验之前不可能确定取何值;可以用数字表示2、随机变量的分类①离散型随机变量:X的取值可一、一列出;②连续型随机变量:X可以取某个区间内的一切值随机变量将随机事件的结果数量化.3、古典概型:①试验中所有可能出现的基本事件只有有限个;②每个基本事件出现的可能性相等。二、探究新知探究1.抛掷一枚骰子,所得的点数X有哪些值?取每个值的概率是多少? 因为X取值范围是{1,2,3,4,5,6}而且"P(X=m)"=1/6,m=1,2,3,4,5,6.因此X分布列如下表所示
1.对称性与首末两端“等距离”的两个二项式系数相等,即C_n^m=C_n^(n"-" m).2.增减性与最大值 当k(n+1)/2时,C_n^k随k的增加而减小.当n是偶数时,中间的一项C_n^(n/2)取得最大值;当n是奇数时,中间的两项C_n^((n"-" 1)/2) 与C_n^((n+1)/2)相等,且同时取得最大值.探究2.已知(1+x)^n =C_n^0+C_n^1 x+...〖+C〗_n^k x^k+...+C_n^n x^n 3.各二项式系数的和C_n^0+C_n^1+C_n^2+…+C_n^n=2n.令x=1 得(1+1)^n=C_n^0+C_n^1 +...+C_n^n=2^n所以,(a+b)^n 的展开式的各二项式系数之和为2^n1. 在(a+b)8的展开式中,二项式系数最大的项为 ,在(a+b)9的展开式中,二项式系数最大的项为 . 解析:因为(a+b)8的展开式中有9项,所以中间一项的二项式系数最大,该项为C_8^4a4b4=70a4b4.因为(a+b)9的展开式中有10项,所以中间两项的二项式系数最大,这两项分别为C_9^4a5b4=126a5b4,C_9^5a4b5=126a4b5.答案:1.70a4b4 126a5b4与126a4b5 2. A=C_n^0+C_n^2+C_n^4+…与B=C_n^1+C_n^3+C_n^5+…的大小关系是( )A.A>B B.A=B C.A<B D.不确定 解析:∵(1+1)n=C_n^0+C_n^1+C_n^2+…+C_n^n=2n,(1-1)n=C_n^0-C_n^1+C_n^2-…+(-1)nC_n^n=0,∴C_n^0+C_n^2+C_n^4+…=C_n^1+C_n^3+C_n^5+…=2n-1,即A=B.答案:B
1.确定研究对象,明确哪个是解释变量,哪个是响应变量;2.由经验确定非线性经验回归方程的模型;3.通过变换,将非线性经验回归模型转化为线性经验回归模型;4.按照公式计算经验回归方程中的参数,得到经验回归方程;5.消去新元,得到非线性经验回归方程;6.得出结果后分析残差图是否有异常 .跟踪训练1.一只药用昆虫的产卵数y与一定范围内的温度x有关,现收集了6组观测数据列于表中: 经计算得: 线性回归残差的平方和: ∑_(i=1)^6?〖(y_i-(y_i ) ?)〗^2=236,64,e^8.0605≈3167.其中 分别为观测数据中的温度和产卵数,i=1,2,3,4,5,6.(1)若用线性回归模型拟合,求y关于x的回归方程 (精确到0.1);(2)若用非线性回归模型拟合,求得y关于x回归方程为 且相关指数R2=0.9522. ①试与(1)中的线性回归模型相比较,用R2说明哪种模型的拟合效果更好 ?②用拟合效果好的模型预测温度为35℃时该种药用昆虫的产卵数.(结果取整数).
乡村建设,规划先行。各省均已出台村庄规划编制技术规范,**、**等工作基础较好的省份已基本完成村庄规划编制任务,但绝大多数省份的村庄规划编制仍处于试点阶段,或初步成果阶段,离完成有条件、有需求的村庄应编尽编目标还存在较大差距。从实践来看,一些实施较好的省份从20**年就开始有序推进村庄规划编制工作,但不管是应编尽编的覆盖面,还是编制任务的完成度,都未达到政策预期。比如,**省仅有8300多个村庄形成了“多规合一”实用性村庄规划编制成果,占全省4.58万个村庄总数的18%;**省全面完成了1027个村庄规划试点编制任务,但试点村庄仅占全省村庄总数的11.1%,还有大量有需求的村庄尚待编制规划;**省编制了1711个省级美丽乡村示范村村庄规划,同步推进其他2000余个有条件、有需求村庄开展村庄规划编制工作,目前只是形成了初步成果。
一、农村实用人才现状 我县在注重人才培养的思想指导下,加大对农村实用人才队伍的培养力度,进一步优化人才发展环境,逐步培养了一批优秀的农村实用人才队伍。农村实用人才活跃在农业和农村经济发展的各个方面,发挥了较好的示范带动作用,为全县经济社会又好又快发展提供了人才保证和智力支持。 据统计,我县共有3025名农村实用人才,占农业人口的0.38%。其中,种植能手386人,占12.8%;养殖能手694人,占22.9%;捕捞能手60人,占2%;加工能手77人,占2.5%;乡村企业经营人才728人,占24.1%;农民专业合作组织带头人278人,占9.2%;农村经纪人164人,占5.4%;能工巧匠78人,占2.6%;动物防疫员206人,占6.8%;农机能手273人,占9%;乡村文体艺术人才81人,占2.7%。
XXX软件有限公司 20xx.01 – 20xx.01幼儿班教师负责与班级外教、助教协调好班级各项工作,定期召开班务会,做好总结,同时传达好工作安排,负责开展组织家长会,家长开放日,亲子活动,组织大大小小的活动几十场,策划活动方案、担任活动的主持人工作。XXX软件有限公司 20xx.01 – 20xx.01幼儿班教师担任校内助理实习生,在校实习期间,曾协助完成 30 余人外宾的来访接待和研讨会议的组织执行,受到外宾和领导的高度肯定。实习结束后获得公司上级与同事一致认可,荣获最佳新人奖
(一)初审。申报单位向失业保险经办机构提交《失业保险应急稳岗返还补贴申请表》及相关材料,由失业保险经办机构对申报单位进行初审。初审通过后将相关材料送至第三方审计师事务所进行审计,并出具审计意见。 (二)审批。xx市人社局暂时性生产经营困难企业认定工作领导小组对申报单位进行审核认定。经审核认定后,对符合条件的单位按失业保险援企稳岗审批程序予以审批。单笔资金超过xxx万的企业报市政府审批,同时报省人社厅、省财政厅备案,审批通过的单位在xx市人社局官网进行公示。公示期满无异议的,将审批结果反馈给失业保险经办机构。 (三)资金拨付。失业保险经办机构收到审批通过结果后按照基金管理规定对申报单位进行资金拨付。
为进一步加强我校教学常规管理,规范教师备课环节,优化课堂教学设计,改进教学方法,全面提高教学质量,按照学期初计划,学校决定开展教案展示及优秀教案评比活动,具体方案如下:一、指导思想坚持求真务实思想和效能化原则,以课程方案为指导,以课程标准、考试说明为准绳,以提高教学质量为核心目标,以提升课堂教学育人效能为出发点和落脚点,以优秀教案评选为抓手,拉动学校常规教学研究环节的深化、细化、精致化。通过有效推广学习优质课程教学资源,促进教师专业发展和教育质量提升。坚持源于课堂实践,优中选优,持续完善的原则,确保征集教案精益求精、实用好用。二、参赛对象:学校部分科任教师。三、活动时间:2018年6月四、实施方案教案评比1.教务科组织教师学习学校制定的《优秀教案评比标准》。2.各教研组组织教师参照《优秀教案评比标准》书写教案。3.各教研组对本组教师书写教案进行初评。初评分一、二、三等三个等级(一等占25%,二等占35%,三等占40%),选送评为一等的教师的教案(1-2位教师的)到教务科集中参评。4.教务科组织专门人员对各教研组选送的教案进行评比。评出1—3位教师的教案为优秀教案。
尊敬的各位评委老师:大家好!我叫xxx,是xxxxx小学的一名中队辅导员。今天我说的少先队活动课的主题是:《从小牢记价值观 做诚实守信少年》。下面我将从活动背景、设计理念、活动目标、活动准备、活动过程等几个方面作具体的阐述。 一、说活动背景: 少年是祖国的未来,民族的希望。价值观则是人们关于生活中基本价值的信念、信仰、理想等思想观念的总和。在青少年的价值观形成时期,帮助、指导他们树立正确的价值观,具有十分重要的历史意义。 二、说设计理念: 我国思想文化建设的重要目标之一是树立正确的世界观、人生观和价值观。学生在价值追求上抱有怎样的信念、信仰、理想,便构成了价值观特有的思想内容。价值观对学生的行为有着深层的导向作用。在现实生活中,我们总是尽可能地按照自己的价值观去生活、处世。这就迫切需要使学生们对价值观的正确性有更深更正确的了解! 三、说活动目标: 1、通过此次活动把社会主义核心价值观融化在学生心里,铭刻在脑海中,明白价值观的重要性,从而种下社会主义核心价值观的种子。 2、从实际生活入手,懂得要从自己做起、身边做起,争做诚实守信的好少年,并用实际行动践行社会主义核心价值观。 四、说活动准备: 辅导员准备:(1).课件准备(2).选定主持人 、演员进行训练 (3).准备队旗等教具。 (4)收集社会主义核心价值体系内涵外延的材料等 学生准备:(1)搜集身边关于诚实守信的故事或行为 (2)初步了解什么是社会主义核心价值观,
一天,樵夫在河边砍树,不小心把斧子掉进了水里。可怜的樵夫瞪大双眼,想看清河底的情况,但河水太深了。“我可怎么办啊?” 樵夫喊道,“失去了斧子,我以后怎么养活孩子们?”他的话让龙王听见了。转瞬,龙王拿着一把斧子给樵夫看:“这是你的吗?”龙王问道。樵夫摇头道,说:“这不是。我的斧子是钢制的。”龙王再次潜入水中。一会儿,手里拿着一把斧子给樵夫看:“这是你的吧?”樵夫回答道:“这把也不是。”它是用金子做的,比我的要贵许多倍!”龙五把金斧子放到岸上,又一次潜入水中。这次浮出水面时,他拿的才是樵夫的斧子。“这个是我的!”樵夫兴奋地喊道。“那就好,另外两把现在也属于你了。它们是河水送给你的礼物,因为你刚才说了实话。”龙王笑着说。
〖设计意图:使学生更深刻更正确地领悟价值观的重要作用,初步树立了正确的价值观,并下决心在价值观的引导下要做一位“诚实守信”的好少年。〗第四环节:快乐品味价值1. PPT分三个层面出示24字核心价值观,请全班同学集体朗诵,并尝试用自己的.话理解24个字的内涵。2.庄严宣誓中队长小结发言后一同面向队旗面向五星红旗庄严宣誓: 接着诵读梁启超先生的《少年中国说》〖通过这一环节让学生进一步巩固核心价值观并达到背诵的目的。让24个字融化在心间,铭刻在脑海里。〗以上四个环节由浅入深, 层层递进,充分调动了学生的多种感官参与活动,促进了学生身心和能力的发展,顺理成章的达到了本次活动的目的。以上就是我对《从小牢记价值观,做诚实守信少年》这节少先队活动课的阐述。存在的不足之处还恳请各位评委老师批评指正。谢谢!
三、真心暖民心,第一时间“送温暖”。局立足本职,主动深入群众送温暖,力所能及帮助群众解决实际困难,不断融洽和谐警民关系。一是嘘寒问暖帮扶群众。主动将温暖送到困难群众家中,春节前期对辖区低保户、贫困户、孤寡老人、残疾人、困难学生等群众组织开展了形式多样的走访慰问活动,送上队伍队伍的关心和新春祝福,并想方设法帮助群众解决实际困难,切实把做到群众最需要的地方。目前全市队伍队伍共走访慰问困难群众32户,帮助群众解决实际困难17件,累计送上慰问品、慰问金达3.6万余元,赢得了广大群众的高度评价;二是心系群众优化服务。局始终把支持、服务和保障企业发展作为重点,细化服务举措,重点护理走访联系服务单位,帮助解决队伍审批中的困难等,主动介入,为企业提供一体化队伍联动服务,切实把贴身服务送到了企业生产和群众生活的最前沿。
三、真心暖民心,第一时间“送温暖”。局立足本职,主动深入群众送温暖,力所能及帮助群众解决实际困难,不断融洽和谐警民关系。一是嘘寒问暖帮扶群众。主动将温暖送到困难群众家中,春节前期对辖区低保户、贫困户、孤寡老人、残疾人、困难学生等群众组织开展了形式多样的走访慰问活动,送上队伍队伍的关心和新春祝福,并想方设法帮助群众解决实际困难,切实把做到群众最需要的地方。目前全市队伍队伍共走访慰问困难群众32户,帮助群众解决实际困难17件,累计送上慰问品、慰问金达3.6万余元,赢得了广大群众的高度评价;二是心系群众优化服务。局始终把支持、服务和保障企业发展作为重点,细化服务举措,重点护理走访联系服务单位,帮助解决队伍审批中的困难等,主动介入,为企业提供一体化队伍联动服务,切实把贴身服务送到了企业生产和群众生活的最前沿。
敬爱的老师、亲爱的同学们:大家早上好!我是大队主席沈岚,很高兴在周一的升旗仪式上和大家交0流。少先队上海市宝山区高镜镇第三中学工作委员会招新啦!为了引导和激励广大少先队员们继承和发扬少先队的优良传统,培养少先队员的小主人意识和民主参与意识,增强光荣感和责任感,锤炼和提高少先队干部的工作能力,为少先队员们提供一个自主、快乐的学习生活环境。11月,我们将通过一年一次的少先队代表大会,简称少代会,选举产生新一届大队委员,从而进一步规范我校少先队组织建设,使少先队更具有活力。少代会,是少先队大队或大队以上组织和机构召开,由队员代表为主体参加的会议,是队组织的最高权力机构,它有商讨、决定一个时期队的重大事务,选举产生队工作领导委员会的权力。11月28日,我们即将迎来高境三中第16次少代会。开学初,大队部下发了少代会题案表,经过统计,我们已经收到17份提案,分别涵盖了校园环境、文明素养、体育设施、饮食饮水、教室环境、社会实践等各方面,我们敬爱的虞校长正在积极筹备,在少队会当天为各位一一解答。
尊敬的各位评委老师: 你们好!我说课的内容是义务教育教科书人教版小学数学四年级下册第一单元第5-6页的内容《乘除法的意义和各部分间的关系》。下面我谈谈本节课的教学设想,不妥之处,恳请各位教师指正。一.我对教材的理解(教材分析)——参考教学参考书《乘除法的意义和各部分间的关系》是人教版小学四年级下册第一单元四则运算中第2课时的教学内容。本课是在学生对整数乘除法有了较多的接触,积累了丰富的感性认识并掌握了相应的基础知识和技能的基础上进行抽象、概括,上升到理性的认识。为后面学习的四则运算打基础,也为以后学习小数、分数的意义和关系做铺垫。二.学情分析(根据考评要求,可不说)因为年龄特征决定了四年级学生活泼好奇好动,虽具一定的抽象思维能力,但仍然以形象思维为主;就知识层面上,已经学习了简单整数乘除法,对整数乘除法及各部分名称有初步的感性认知,初步具备了理性认知学习的基础;同时又存在个体差异,多数学生思维活跃,数学兴趣浓厚,表现欲望强烈,少数学生缺乏积极性,学习被动。
通过这次培训,使我进一步学会了更好的审视自己、审视身边人,更好的去观察身边人的情绪,了解身边人的心理,理解身边人的需求;心理学不但让人更好的学会面对自己,也让人更好的学会与别人相处;人无远虑必有近忧,身处这个信息高速发展的时代,工作环境变迁、身边人员流动变得习以为常,为了更好的工作,更好的与别人相处,这就要求我们必须更好的适应环境变化,了解身边不断变换的人的心理,学会更好的方式与身边人交流;人与人相处、沟通,理解是融洽相处的前提。但是这些知识从前无论生活中还是工作中都被自己有意无意的忽视了,通过几次培训中老师深入浅出的讲解,对我的帮助和触动非常大。不仅对现在,在学习过程中学到的知识和感触也会深远的影响到我的今后生活和工作。