为了更好的同幼儿一起进入角色,我采用了互动式教学模式,在教师与幼儿的问答中想象,猜测故事的发展,从而达到共同完成教学任务。下面我从以下三方面具体说说我的设计思路:一、出示角色形象,吸引幼儿进入故事。教学伊始,我和幼儿一起做手指操《大公鸡》并问幼儿:今天大公鸡来我们班做客,你们欢迎吗?(出示公鸡图片)小朋友大家好!你们看我美丽吗?哪美丽?你能用语言夸夸我吗?从而引导幼儿从“冠子”“羽毛”“脚”等方面来形容公鸡的美丽。有的幼儿说“冠子红红的,大大的”有的说“身上的羽毛五颜六色的”有的说“脚是黄颜色的”等孩子描述完大公鸡,我有模仿公鸡说:“我还为自己编了首儿歌,你们想听吗?”孩子们高息的说:“想听。”“公鸡公鸡真美丽,大红冠子花外衣,油亮的脖子金黄的脚,要比漂亮我第一。”让幼儿对故事中的公鸡有一个整体印象,为下文的猜测故事打下基础。二、逐一出示图片,引导幼儿预测故事的发展,和幼儿一同讲故事。待幼儿对故事中的公鸡有了感性认知后,我开始讲述故事的开头,当讲到公鸡得意洋洋地唱完歌,问孩子:“请你猜想一下这只公鸡要干什么去?”由于幼儿听了两遍儿歌很容易回答出“比美去”“比漂亮去”。接着出示“树林”让幼儿自由观察思考:公鸡来到了哪?看见了谁在干什么?它会说什么?“啄木鸟”会和它比美吗?让幼儿真正进入到故事情境中来,猜测它们会说些什么。因为幼儿知道公鸡要和别人比美所以很容易猜出:“啄木鸟,咱们比比谁美?”“啄木鸟正忙着给大树捉虫子,会和它比美吗?”我又把问题抛给了孩子,他们一直认为不会,从而猜出啄木鸟的话。在此引导幼儿用得意洋洋的语气说公鸡的话,用冷冷的语气说啄木鸟的话,师幼共同分角色进行对话。放手让幼儿根据第一幅图讲述“果园”和“稻田”中比美的图片,幼儿能按原有经验进行讲述。最后引导幼儿思考:为什么它们不和公鸡比美?有的幼儿说“它们不愿意和公鸡比美”,有的说“它们正忙着呢”在回家的路上公鸡遇到了谁?老马会给它满意的答案吗?听了老马的话公鸡会怎么做?幼儿很轻松的猜出了故事的结尾,整篇故事都给幼儿留下了广阔的思考和想象的空间。
通过《调皮的七彩光》这个故事就可以让幼儿知道:色彩来源于光的作用,是调皮的七彩光娃娃从天空来到地上“玩”出来的。我们的身边处处都有七彩颜色。有了七彩颜色,画画更美丽,打扮东西更漂亮,游戏起来更有趣。本活动有利于帮助幼儿成为色彩世界的探究者,发现自然界中的许多奥秘,培养幼儿对自然界探究的欲望和对生活的热爱,感受生活的乐趣。二、说活动目标根据大班幼儿年龄特点和《幼儿园教育指导纲要》的精神以及作品展示的主题,确立了情感、认知、能力各方面的目标:1.获得光与色的感性经验,初步了解光的七色是:红、橙、黄、绿、青、蓝、紫。2.在感受作品语言美和意境美的同时,理解光与环境以及人们生活的关系。3.能结合已有的生活经验,鼓励幼儿大胆想象,续编故事,充分发展幼儿想象力、创造力以及语言表达能力。教学重点:让幼儿在感受作品语言美和意境美的同时,理解光与环境以及人们生活的关系。教学难点:在续编过程中,地点与事物、事物与事物之间的逻辑关系。由于大班幼儿的思维是以形象思维为主,逻辑思维才开始萌芽,极易引起思维上的逻辑混乱。三、活动准备为了给幼儿展示优美意境的作品,使幼儿在活动过程中得以充分的表达和练习,我们作了以下准备:(一)硬件准备1.多棱镜、CD光盘2.Flash课件3.选择晴朗的天气进行活动。(二)知识准备课前必须丰富幼儿有关光与色的知识经验和生活经验,并加以提取和整理。四、说教法、学法教师是学习活动的支持者和引导者,在活动中通过多媒体演示法、情境教学法,使活动呈现趣味性、生动性、寓教育于生活,使主题活动得到深化。本次活动幼儿采用:视听结合法、讨论法、尝试法来理解故事,欣赏故事,创编故事。通过幼儿互补学习,师幼合作来表现主题。四、说活动流程1.教师带领幼儿到活动室门口找光线宝宝,引出课题,激发幼儿学习和探究的欲望。
教材所含的知识点是对阿凡提这一人物特点的理解和掌握。通常情况下,语言活动不太容易确立知识点。这一知识点的确立是依据了幼儿品德形成过程具有具体形象性的特点。为什么这样说?因为每个小朋友随着年龄的增加,欣赏文学作品的数量越多,他对其中一些重要的或是主要人物的形象特点、性格特点了解的就越多,那么,对他一生的发展、性格的幼稚就越有协助。通过欣赏这个故事我们可以协助小朋友在头脑中构建一个集善良、勇敢和智慧于一身的鲜明人物形象,从而,为小朋友良好品德的形成奠定形象模仿的基础。依据幼儿园语言教学的任务所包括的若干方面以和素质教育中大班年龄阶段的课程规范,从四个方面制定了教学目标:1、培养幼儿欣赏文学作品的兴趣,在参与扮演中体验故事角色的特点。2、引导幼儿懂得阿凡提是用自身的智慧战胜皇帝的。3、发展幼儿的思维和口语表达能力,协助幼儿在理解故事的基础上记住故事的主要情节。4、丰富词汇:浑身发抖。教材的重点是:协助幼儿熟悉理解故事内容,记住故事的精彩片断。这是依据了故事教材的要求之一:“教师在故事教学中,首先要培养幼儿领会作品的技能。”也就是说,任何一个文学作品,教师首先都应协助幼儿理解作品,这是关键。教材的难点是:引导幼儿懂得阿凡提是用自身的智慧战胜皇帝的,从而逃脱了被杀死的危险。那么,什么是智慧?对于小朋友来说,智慧是看不见、摸不着、也感受不到的。只有在危险和困难面前,一个人的智慧才会显现出来。智慧能协助人们脱离险情。那么,智慧从哪里来呢?一个人知识面越广,阅历越丰富,才会越有智慧。这些都需要教师引导幼儿去理解。二、说教学方法针对这一个故事的特点,我主要采用讲述问答法和视听欣赏法。讲述问答法。是将教师生动形象地讲述故事和提问题幼儿考虑回答结合起来。在教师向幼儿讲述故事时,为了能使故事内容吸引幼儿,就要做到有感情。感情就是一种投入的程度,就象我现在站在这里为大家进行说课,我会自觉不自觉地运用一些语调、语速的变化,面部表情以和手势、动作的变化来吸引听者的注意,激发对方倾听的愿望和兴趣。这和讲故事一样,你只要做到将自身置身于故事的情景当中,引起幼儿的想象,使故事内容在幼儿头脑中出现出一幅幅图画来,从而留下深刻的印象就可以了。所以说最大限度地发挥教师生动讲述的作用,对于幼儿喜爱和理解作品的程度将起到至关重要的作用。故事欣赏自然离不开提问,提问可以在前,可以在后,也可以在故事中交叉,目的都是协助幼儿理解和掌握故事内容。视听欣赏法。是利用实物投影仪和录音机两种电教仪器的配合使用,协助幼儿再一次把故事内容在头脑中构建一个完整的画面印象,刺激幼儿的听觉和视觉,加深对故事前后连贯性的理解。多年的教学实践证明,声画同步的电教手段无疑是一种生动形象的信息传达途径,它可以把幼儿由被动学习引向主动学习的位置,同时对于引导幼儿积极地欣赏也起到了促进作用。
二.说活动目标《纲要》指出,发展幼儿语言的重要途径是通过互相渗透的各个领域的教育,在丰富多彩的活动中扩展幼儿经验,提供促进语言发展的条件,根据大班幼儿的内容特点,我分别从认知、能力、情感三方面制定了活动目标。1.通过多媒体教学,帮助幼儿理解诗歌内容,懂得同伴间要友爱,激发热爱绿色,保护向往绿色的情感。2.培养幼儿乐意欣赏不同体裁,不同风格的文学作品的兴趣,初步了解叙事诗。3.幼儿在感知作品的基础上,初步体验诗歌中绿色、灰色所代表的含义。重点:帮助幼儿理解诗歌内容难点:初步体验诗歌中绿色、灰色所代表的含义三.说活动准备为了更好的完成本次活动目标,我准备了以下材料1.制作与诗歌内容相关的课件2.幼儿人手一面绿旗、灰旗3.诗歌表演的场地布置(森林、鸟窝、小溪、棕榈叶)4.录音机、磁带、小红花若干四.说活动过程根据大班幼儿年龄特点,我设计了以下5个环节1.整体欣赏诗歌《绿色的和灰色的》“今天老师给小朋友带来了一首诗,你们想听吗?现在我们来听一听,看一看”(屏幕显示诗歌内容、图像、配音)2.分段欣赏诗歌,理解诗歌情节,初步体验情感“诗歌里都说了些什么呢?让我们一起来看一看。”(1)“小朋友你觉得这儿的环境怎么样,心里有什么感觉?”(第一段)(2)让幼儿感受狐狸的狡猾,小鸟的善良。(第二段)(3)让幼儿体验小兔的机智、聪明(第三、四段)(4)让幼儿体验狐狸的失望3.表演诗歌,加深理解,进一步体验情感(1)整体欣赏诗歌一遍“现在我们把诗歌再欣赏一次,如果你喜欢,可以轻轻地跟着说(2)让幼儿分组表演诗歌“请你先和好朋友轻轻商量分配好角色,把小动物们说的话表演出来,看谁表演的最好(3)请表现突出的幼儿上台表演4.迁移经验,玩游戏(1)讨论:“小兔安全的经过了草地,要想谢谢大家给它的帮助,那是谁帮助了它呢?”问“这么多的绿色帮助了小兔,你喜欢绿色吗?”(2)玩游戏:看画面,举小旗5.在歌曲《绿色的家》中结束活动
1、通过同位之间互说座位位置,检测知识目标2、3的达成效果。2、通过导学案上的探究一,检测知识目标2、3的达成效果。 3、通过探究二,检测知识目标1、3的达成效果。 4、通过课堂反馈,检测总体教学目标的达成效果。本节课遵循分层施教的原则,以适应不同学生的发展与提高,针对学生回答问题本着多鼓励、少批评的原则,具体从以下几方面进行评价:1、通过学生独立思考、参与小组交流和班级集体展示,教师课堂观察学生的表现,了解学生对知识的理解和掌握情况。教师进行适时的反应评价,同时促进学生的自评与互评。2、通过设计课堂互说座位、探究一、二及达标检测题,检测学习目标达成情况,同时有利于学生完成对自己的评价。3.通过课后作业,了解学生对本课时知识的掌握情况,同时又能检测学生分析解决问题的方法和思路,完成教学反馈评价。
一、教学目标(一)知识教育点使学生掌握抛物线的定义、抛物线的标准方程及其推导过程.(二)能力训练点要求学生进一步熟练掌握解析几何的基本思想方法,提高分析、对比、概括、转化等方面的能力.(三)学科渗透点通过一个简单实验引入抛物线的定义,可以对学生进行理论来源于实践的辩证唯物主义思想教育.二、教材分析1.重点:抛物线的定义和标准方程.2.难点:抛物线的标准方程的推导.三、活动设计提问、回顾、实验、讲解、板演、归纳表格.四、教学过程(一)导出课题我们已学习了圆、椭圆、双曲线三种圆锥曲线.今天我们将学习第四种圆锥曲线——抛物线,以及它的定义和标准方程.课题是“抛物线及其标准方程”.首先,利用篮球和排球的运动轨迹给出抛物线的实际意义,再利用太阳灶和抛物线型的桥说明抛物线的实际用途。
教学目的:理解并熟练掌握正态分布的密度函数、分布函数、数字特征及线性性质。教学重点:正态分布的密度函数和分布函数。教学难点:正态分布密度曲线的特征及正态分布的线性性质。教学学时:2学时教学过程:第四章 正态分布§4.1 正态分布的概率密度与分布函数在讨论正态分布之前,我们先计算积分。首先计算。因为(利用极坐标计算)所以。记,则利用定积分的换元法有因为,所以它可以作为某个连续随机变量的概率密度函数。定义 如果连续随机变量的概率密度为则称随机变量服从正态分布,记作,其中是正态分布的参数。正态分布也称为高斯(Gauss)分布。
教学准备 1. 教学目标 知识与技能掌握双曲线的定义,掌握双曲线的四种标准方程形式及其对应的焦点、准线.过程与方法掌握对双曲线标准方程的推导,进一步理解求曲线方程的方法——坐标法.通过本节课的学习,提高学生观察、类比、分析和概括的能力.情感、态度与价值观通过本节的学习,体验研究解析几何的基本思想,感受圆锥曲线在刻画现实和解决实际问题中的作用,进一步体会数形结合的思想.2. 教学重点/难点 教学重点双曲线的定义及焦点及双曲线标准方程.教学难点在推导双曲线标准方程的过程中,如何选择适当的坐标系. 3. 教学用具 多媒体4. 标签
教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 8.4 圆(二) *创设情境 兴趣导入 【知识回顾】 我们知道,平面内直线与圆的位置关系有三种(如图8-21): (1)相离:无交点; (2)相切:仅有一个交点; (3)相交:有两个交点. 并且知道,直线与圆的位置关系,可以由圆心到直线的距离d与半径r的关系来判别(如图8-22): (1):直线与圆相离; (2):直线与圆相切; (3):直线与圆相交. 介绍 讲解 说明 质疑 引导 分析 了解 思考 思考 带领 学生 分析 启发 学生思考 0 15*动脑思考 探索新知 【新知识】 设圆的标准方程为 , 则圆心C(a,b)到直线的距离为 . 比较d与r的大小,就可以判断直线与圆的位置关系. 讲解 说明 引领 分析 思考 理解 带领 学生 分析 30*巩固知识 典型例题 【知识巩固】 例6 判断下列各直线与圆的位置关系: ⑴直线, 圆; ⑵直线,圆. 解 ⑴ 由方程知,圆C的半径,圆心为. 圆心C到直线的距离为 , 由于,故直线与圆相交. ⑵ 将方程化成圆的标准方程,得 . 因此,圆心为,半径.圆心C到直线的距离为 , 即由于,所以直线与圆相交. 【想一想】 你是否可以找到判断直线与圆的位置关系的其他方法? *例7 过点作圆的切线,试求切线方程. 分析 求切线方程的关键是求出切线的斜率.可以利用原点到切线的距离等于半径的条件来确定. 解 设所求切线的斜率为,则切线方程为 , 即 . 圆的标准方程为 , 所以圆心,半径. 图8-23 圆心到切线的距离为 , 由于圆心到切线的距离与半径相等,所以 , 解得 . 故所求切线方程(如图8-23)为 , 即 或. 说明 例题7中所使用的方法是待定系数法,在利用代数方法研究几何问题中有着广泛的应用. 【想一想】 能否利用“切线垂直于过切点的半径”的几何性质求出切线方程? 说明 强调 引领 讲解 说明 引领 讲解 说明 观察 思考 主动 求解 思考 主动 求解 通过例题进一步领会 注意 观察 学生 是否 理解 知识 点 50
本人所教的两个班级学生普遍存在着数学科基础知识较为薄弱,计算能力较差,综合能力不强,对数学学习有一定的困难。在课堂上的主体作用的体现不是太充分,但是他们能意识到自己的不足,对数学课的学习兴趣高,积极性强。 学生在学习交往上表现为个别化学习,课堂上较为依赖老师的引导。学生的群体性小组交流能力与协同讨论学习的能力不强,对学习资源和知识信息的获取、加工、处理和综合的能力较低。在教学中尽量分析细致,减少跨度较大的环节,对重要的推导过程采用板书方式逐步进行,力求让绝大多数学生接受。 1.理解椭圆标准方程的推导;掌握椭圆的标准方程;会根据条件求椭圆的标准方程,会根据椭圆的标准方程求焦点坐标. 2.通过椭圆图形的研究和标准方程的讨论,使学生掌握椭圆的几何性质,能正确地画出椭圆的图形,并了解椭圆的一些实际应用。 1.让学生经历椭圆标准方程的推导过程,进一步掌握求曲线方程的一般方法,体会数形结合等数学思想;培养学生运用类比、联想等方法提出问题. 2.培养学生运用数形结合的思想,进一步掌握利用方程研究曲线的基本方法,通过与椭圆几何性质的对比来提高学生联想、类比、归纳的能力,解决一些实际问题。 1.通过具体的情境感知研究椭圆标准方程的必要性和实际意义;体会数学的对称美、简洁美,培养学生的审美情趣,形成学习数学知识的积极态度. 2.进一步理解并掌握代数知识在解析几何运算中的作用,提高解方程组和计算能力,通过“数”研究“形”,说明“数”与“形”存在矛盾的统一体中,通过“数”的变化研究“形”的本质。帮助学生建立勇于探索创新的精神和克服困难的信心。
4.有8种不同的菜种,任选4种种在不同土质的4块地里,有 种不同的种法. 解析:将4块不同土质的地看作4个不同的位置,从8种不同的菜种中任选4种种在4块不同土质的地里,则本题即为从8个不同元素中任选4个元素的排列问题,所以不同的种法共有A_8^4 =8×7×6×5=1 680(种).答案:1 6805.用1、2、3、4、5、6、7这7个数字组成没有重复数字的四位数.(1)这些四位数中偶数有多少个?能被5整除的有多少个?(2)这些四位数中大于6 500的有多少个?解:(1)偶数的个位数只能是2、4、6,有A_3^1种排法,其他位上有A_6^3种排法,由分步乘法计数原理,知共有四位偶数A_3^1·A_6^3=360(个);能被5整除的数个位必须是5,故有A_6^3=120(个).(2)最高位上是7时大于6 500,有A_6^3种,最高位上是6时,百位上只能是7或5,故有2×A_5^2种.由分类加法计数原理知,这些四位数中大于6 500的共有A_6^3+2×A_5^2=160(个).
探究新知问题1:已知100件产品中有8件次品,现从中采用有放回方式随机抽取4件.设抽取的4件产品中次品数为X,求随机变量X的分布列.(1):采用有放回抽样,随机变量X服从二项分布吗?采用有放回抽样,则每次抽到次品的概率为0.08,且各次抽样的结果相互独立,此时X服从二项分布,即X~B(4,0.08).(2):如果采用不放回抽样,抽取的4件产品中次品数X服从二项分布吗?若不服从,那么X的分布列是什么?不服从,根据古典概型求X的分布列.解:从100件产品中任取4件有 C_100^4 种不同的取法,从100件产品中任取4件,次品数X可能取0,1,2,3,4.恰有k件次品的取法有C_8^k C_92^(4-k)种.一般地,假设一批产品共有N件,其中有M件次品.从N件产品中随机抽取n件(不放回),用X表示抽取的n件产品中的次品数,则X的分布列为P(X=k)=CkM Cn-kN-M CnN ,k=m,m+1,m+2,…,r.其中n,N,M∈N*,M≤N,n≤N,m=max{0,n-N+M},r=min{n,M},则称随机变量X服从超几何分布.
二项式定理形式上的特点(1)二项展开式有n+1项,而不是n项.(2)二项式系数都是C_n^k(k=0,1,2,…,n),它与二项展开式中某一项的系数不一定相等.(3)二项展开式中的二项式系数的和等于2n,即C_n^0+C_n^1+C_n^2+…+C_n^n=2n.(4)在排列方式上,按照字母a的降幂排列,从第一项起,次数由n次逐项减少1次直到0次,同时字母b按升幂排列,次数由0次逐项增加1次直到n次.1.判断(正确的打“√”,错误的打“×”)(1)(a+b)n展开式中共有n项. ( )(2)在公式中,交换a,b的顺序对各项没有影响. ( )(3)Cknan-kbk是(a+b)n展开式中的第k项. ( )(4)(a-b)n与(a+b)n的二项式展开式的二项式系数相同. ( )[解析] (1)× 因为(a+b)n展开式中共有n+1项.(2)× 因为二项式的第k+1项Cknan-kbk和(b+a)n的展开式的第k+1项Cknbn-kak是不同的,其中的a,b是不能随便交换的.(3)× 因为Cknan-kbk是(a+b)n展开式中的第k+1项.(4)√ 因为(a-b)n与(a+b)n的二项式展开式的二项式系数都是Crn.[答案] (1)× (2)× (3)× (4)√
2.某小组有20名射手,其中1,2,3,4级射手分别为2,6,9,3名.又若选1,2,3,4级射手参加比赛,则在比赛中射中目标的概率分别为0.85,0.64,0.45,0.32,今随机选一人参加比赛,则该小组比赛中射中目标的概率为________. 【解析】设B表示“该小组比赛中射中目标”,Ai(i=1,2,3,4)表示“选i级射手参加比赛”,则P(B)= P(Ai)P(B|Ai)= 2/20×0.85+ 6/20 ×0.64+ 9/20×0.45+ 3/20×0.32=0.527 5.答案:0.527 53.两批相同的产品各有12件和10件,每批产品中各有1件废品,现在先从第1批产品中任取1件放入第2批中,然后从第2批中任取1件,则取到废品的概率为________. 【解析】设A表示“取到废品”,B表示“从第1批中取到废品”,有P(B)= 112,P(A|B)= 2/11 ,P(A| )= 1/11所以P(A)=P(B)P(A|B)+P( )P(A| )4.有一批同一型号的产品,已知其中由一厂生产的占 30%, 二厂生产的占 50% , 三厂生产的占 20%, 又知这三个厂的产品次品率分别为2% , 1%, 1%,问从这批产品中任取一件是次品的概率是多少?
(2)方法一:第一次取到一件不合格品,还剩下99件产品,其中有4件不合格品,95件合格品,于是第二次又取到不合格品的概率为4/99,由于这是一个条件概率,所以P(B|A)=4/99.方法二:根据条件概率的定义,先求出事件A,B同时发生的概率P(AB)=(C_5^2)/(C_100^2 )=1/495,所以P(B|A)=(P"(" AB")" )/(P"(" A")" )=(1/495)/(5/100)=4/99.6.在某次考试中,要从20道题中随机地抽出6道题,若考生至少答对其中的4道题即可通过;若至少答对其中5道题就获得优秀.已知某考生能答对其中10道题,并且知道他在这次考试中已经通过,求他获得优秀成绩的概率.解:设事件A为“该考生6道题全答对”,事件B为“该考生答对了其中5道题而另一道答错”,事件C为“该考生答对了其中4道题而另2道题答错”,事件D为“该考生在这次考试中通过”,事件E为“该考生在这次考试中获得优秀”,则A,B,C两两互斥,且D=A∪B∪C,E=A∪B,由古典概型的概率公式及加法公式可知P(D)=P(A∪B∪C)=P(A)+P(B)+P(C)=(C_10^6)/(C_20^6 )+(C_10^5 C_10^1)/(C_20^6 )+(C_10^4 C_10^2)/(C_20^6 )=(12" " 180)/(C_20^6 ),P(E|D)=P(A∪B|D)=P(A|D)+P(B|D)=(P"(" A")" )/(P"(" D")" )+(P"(" B")" )/(P"(" D")" )=(210/(C_20^6 ))/((12" " 180)/(C_20^6 ))+((2" " 520)/(C_20^6 ))/((12" " 180)/(C_20^6 ))=13/58,即所求概率为13/58.
3.某县农民月均收入服从N(500,202)的正态分布,则此县农民月均收入在500元到520元间人数的百分比约为 . 解析:因为月收入服从正态分布N(500,202),所以μ=500,σ=20,μ-σ=480,μ+σ=520.所以月均收入在[480,520]范围内的概率为0.683.由图像的对称性可知,此县农民月均收入在500到520元间人数的百分比约为34.15%.答案:34.15%4.某种零件的尺寸ξ(单位:cm)服从正态分布N(3,12),则不属于区间[1,5]这个尺寸范围的零件数约占总数的 . 解析:零件尺寸属于区间[μ-2σ,μ+2σ],即零件尺寸在[1,5]内取值的概率约为95.4%,故零件尺寸不属于区间[1,5]内的概率为1-95.4%=4.6%.答案:4.6%5. 设在一次数学考试中,某班学生的分数X~N(110,202),且知试卷满分150分,这个班的学生共54人,求这个班在这次数学考试中及格(即90分及90分以上)的人数和130分以上的人数.解:μ=110,σ=20,P(X≥90)=P(X-110≥-20)=P(X-μ≥-σ),∵P(X-μσ)≈2P(X-μ130)=P(X-110>20)=P(X-μ>σ),∴P(X-μσ)≈0.683+2P(X-μ>σ)=1,∴P(X-μ>σ)=0.158 5,即P(X>130)=0.158 5.∴54×0.158 5≈9(人),即130分以上的人数约为9人.
解析:因为减法和除法运算中交换两个数的位置对计算结果有影响,所以属于组合的有2个.答案:B2.若A_n^2=3C_(n"-" 1)^2,则n的值为( )A.4 B.5 C.6 D.7 解析:因为A_n^2=3C_(n"-" 1)^2,所以n(n-1)=(3"(" n"-" 1")(" n"-" 2")" )/2,解得n=6.故选C.答案:C 3.若集合A={a1,a2,a3,a4,a5},则集合A的子集中含有4个元素的子集共有 个. 解析:满足要求的子集中含有4个元素,由集合中元素的无序性,知其子集个数为C_5^4=5.答案:54.平面内有12个点,其中有4个点共线,此外再无任何3点共线,以这些点为顶点,可得多少个不同的三角形?解:(方法一)我们把从共线的4个点中取点的多少作为分类的标准:第1类,共线的4个点中有2个点作为三角形的顶点,共有C_4^2·C_8^1=48(个)不同的三角形;第2类,共线的4个点中有1个点作为三角形的顶点,共有C_4^1·C_8^2=112(个)不同的三角形;第3类,共线的4个点中没有点作为三角形的顶点,共有C_8^3=56(个)不同的三角形.由分类加法计数原理,不同的三角形共有48+112+56=216(个).(方法二 间接法)C_12^3-C_4^3=220-4=216(个).
《奇偶性》内容选自人教版A版第一册第三章第三节第二课时;函数奇偶性是研究函数的一个重要策略,因此奇偶性成为函数的重要性质之一,它的研究也为今后指对函数、幂函数、三角函数的性质等后续内容的深入起着铺垫的作用.课程目标1、理解函数的奇偶性及其几何意义;2、学会运用函数图象理解和研究函数的性质;3、学会判断函数的奇偶性.数学学科素养1.数学抽象:用数学语言表示函数奇偶性;2.逻辑推理:证明函数奇偶性;3.数学运算:运用函数奇偶性求参数;4.数据分析:利用图像求奇偶函数;5.数学建模:在具体问题情境中,运用数形结合思想,利用奇偶性解决实际问题。重点:函数奇偶性概念的形成和函数奇偶性的判断;难点:函数奇偶性概念的探究与理解.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。
一、复习回顾,温故知新1. 任意角三角函数的定义【答案】设角 它的终边与单位圆交于点 。那么(1) (2) 2.诱导公式一 ,其中, 。终边相同的角的同一三角函数值相等二、探索新知思考1:(1).终边相同的角的同一三角函数值有什么关系?【答案】相等(2).角 -α与α的终边 有何位置关系?【答案】终边关于x轴对称(3).角 与α的终边 有何位置关系?【答案】终边关于y轴对称(4).角 与α的终边 有何位置关系?【答案】终边关于原点对称思考2: 已知任意角α的终边与单位圆相交于点P(x, y),请同学们思考回答点P关于原点、x轴、y轴对称的三个点的坐标是什么?【答案】点P(x, y)关于原点对称点P1(-x, -y)点P(x, y)关于x轴对称点P2(x, -y) 点P(x, y)关于y轴对称点P3(-x, y)
幂函数是在继一次函数、反比例函数、二次函数之后,又学习了单调性、最值、奇偶性的基础上,借助实例,总结出幂函数的概念,再借助图像研究幂函数的性质.课程目标1、理解幂函数的概念,会画幂函数y=x,y=x2,y=x3,y=x-1,y=x 的图象;2、结合这几个幂函数的图象,理解幂函数图象的变化情况和性质;3、通过观察、总结幂函数的性质,培养学生概括抽象和识图能力.数学学科素养1.数学抽象:用数学语言表示函数幂函数;2.逻辑推理:常见幂函数的性质;3.数学运算:利用幂函数的概念求参数;4.数据分析:比较幂函数大小;5.数学建模:在具体问题情境中,运用数形结合思想,利用幂函数性质、图像特点解决实际问题。重点:常见幂函数的概念、图象和性质;难点:幂函数的单调性及比较两个幂值的大小.