3.下结论.依据均值和方差做出结论.跟踪训练2. A、B两个投资项目的利润率分别为随机变量X1和X2,根据市场分析, X1和X2的分布列分别为X1 2% 8% 12% X2 5% 10%P 0.2 0.5 0.3 P 0.8 0.2求:(1)在A、B两个项目上各投资100万元, Y1和Y2分别表示投资项目A和B所获得的利润,求方差D(Y1)和D(Y2);(2)根据得到的结论,对于投资者有什么建议? 解:(1)题目可知,投资项目A和B所获得的利润Y1和Y2的分布列为:Y1 2 8 12 Y2 5 10P 0.2 0.5 0.3 P 0.8 0.2所以 ;; 解:(2) 由(1)可知 ,说明投资A项目比投资B项目期望收益要高;同时 ,说明投资A项目比投资B项目的实际收益相对于期望收益的平均波动要更大.因此,对于追求稳定的投资者,投资B项目更合适;而对于更看重利润并且愿意为了高利润承担风险的投资者,投资A项目更合适.
对于离散型随机变量,可以由它的概率分布列确定与该随机变量相关事件的概率。但在实际问题中,有时我们更感兴趣的是随机变量的某些数字特征。例如,要了解某班同学在一次数学测验中的总体水平,很重要的是看平均分;要了解某班同学数学成绩是否“两极分化”则需要考察这个班数学成绩的方差。我们还常常希望直接通过数字来反映随机变量的某个方面的特征,最常用的有期望与方差.二、 探究新知探究1.甲乙两名射箭运动员射中目标靶的环数的分布列如下表所示:如何比较他们射箭水平的高低呢?环数X 7 8 9 10甲射中的概率 0.1 0.2 0.3 0.4乙射中的概率 0.15 0.25 0.4 0.2类似两组数据的比较,首先比较击中的平均环数,如果平均环数相等,再看稳定性.假设甲射箭n次,射中7环、8环、9环和10环的频率分别为:甲n次射箭射中的平均环数当n足够大时,频率稳定于概率,所以x稳定于7×0.1+8×0.2+9×0.3+10×0.4=9.即甲射中平均环数的稳定值(理论平均值)为9,这个平均值的大小可以反映甲运动员的射箭水平.同理,乙射中环数的平均值为7×0.15+8×0.25+9×0.4+10×0.2=8.65.
解析:当a0时,直线ax-by=1在x轴上的截距1/a0,在y轴上的截距-1/a>0.只有B满足.故选B.答案:B 3.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:设所求直线方程为x-2y+c=0,把点(1,0)代入可求得c=-1.所以所求直线方程为x-2y-1=0.故选A.4.已知两条直线y=ax-2和3x-(a+2)y+1=0互相平行,则a=________.答案:1或-3 解析:依题意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直线.(1)求实数m的范围;(2)若该直线的斜率k=1,求实数m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直线,则m2-3m+2与m-2不能同时为0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.
课前小测1.思考辨析(1)若Sn为等差数列{an}的前n项和,则数列Snn也是等差数列.( )(2)若a1>0,d<0,则等差数列中所有正项之和最大.( )(3)在等差数列中,Sn是其前n项和,则有S2n-1=(2n-1)an.( )[答案] (1)√ (2)√ (3)√2.在项数为2n+1的等差数列中,所有奇数项的和为165,所有偶数项的和为150,则n等于( )A.9 B.10 C.11 D.12B [∵S奇S偶=n+1n,∴165150=n+1n.∴n=10.故选B项.]3.等差数列{an}中,S2=4,S4=9,则S6=________.15 [由S2,S4-S2,S6-S4成等差数列得2(S4-S2)=S2+(S6-S4)解得S6=15.]4.已知数列{an}的通项公式是an=2n-48,则Sn取得最小值时,n为________.23或24 [由an≤0即2n-48≤0得n≤24.∴所有负项的和最小,即n=23或24.]二、典例解析例8.某校新建一个报告厅,要求容纳800个座位,报告厅共有20排座位,从第2排起后一排都比前一排多两个座位. 问第1排应安排多少个座位?分析:将第1排到第20排的座位数依次排成一列,构成数列{an} ,设数列{an} 的前n项和为S_n。
1.判断正误(正确的打“√”,错误的打“×”)(1)函数f (x)在区间(a,b)上都有f ′(x)<0,则函数f (x)在这个区间上单调递减. ( )(2)函数在某一点的导数越大,函数在该点处的切线越“陡峭”. ( )(3)函数在某个区间上变化越快,函数在这个区间上导数的绝对值越大.( )(4)判断函数单调性时,在区间内的个别点f ′(x)=0,不影响函数在此区间的单调性.( )[解析] (1)√ 函数f (x)在区间(a,b)上都有f ′(x)<0,所以函数f (x)在这个区间上单调递减,故正确.(2)× 切线的“陡峭”程度与|f ′(x)|的大小有关,故错误.(3)√ 函数在某个区间上变化的快慢,和函数导数的绝对值大小一致.(4)√ 若f ′(x)≥0(≤0),则函数f (x)在区间内单调递增(减),故f ′(x)=0不影响函数单调性.[答案] (1)√ (2)× (3)√ (4)√例1. 利用导数判断下列函数的单调性:(1)f(x)=x^3+3x; (2) f(x)=sinx-x,x∈(0,π); (3)f(x)=(x-1)/x解: (1) 因为f(x)=x^3+3x, 所以f^' (x)=〖3x〗^2+3=3(x^2+1)>0所以f(x)=x^3+3x ,函数在R上单调递增,如图(1)所示
一、 问题导学前面两节所讨论的变量,如人的身高、树的胸径、树的高度、短跑100m世界纪录和创纪录的时间等,都是数值变量,数值变量的取值为实数.其大小和运算都有实际含义.在现实生活中,人们经常需要回答一定范围内的两种现象或性质之间是否存在关联性或相互影响的问题.例如,就读不同学校是否对学生的成绩有影响,不同班级学生用于体育锻炼的时间是否有差别,吸烟是否会增加患肺癌的风险,等等,本节将要学习的独立性检验方法为我们提供了解决这类问题的方案。在讨论上述问题时,为了表述方便,我们经常会使用一种特殊的随机变量,以区别不同的现象或性质,这类随机变量称为分类变量.分类变量的取值可以用实数表示,例如,学生所在的班级可以用1,2,3等表示,男性、女性可以用1,0表示,等等.在很多时候,这些数值只作为编号使用,并没有通常的大小和运算意义,本节我们主要讨论取值于{0,1}的分类变量的关联性问题.
温故知新 1.离散型随机变量的定义可能取值为有限个或可以一一列举的随机变量,我们称为离散型随机变量.通常用大写英文字母表示随机变量,例如X,Y,Z;用小写英文字母表示随机变量的取值,例如x,y,z.随机变量的特点: 试验之前可以判断其可能出现的所有值,在试验之前不可能确定取何值;可以用数字表示2、随机变量的分类①离散型随机变量:X的取值可一、一列出;②连续型随机变量:X可以取某个区间内的一切值随机变量将随机事件的结果数量化.3、古典概型:①试验中所有可能出现的基本事件只有有限个;②每个基本事件出现的可能性相等。二、探究新知探究1.抛掷一枚骰子,所得的点数X有哪些值?取每个值的概率是多少? 因为X取值范围是{1,2,3,4,5,6}而且"P(X=m)"=1/6,m=1,2,3,4,5,6.因此X分布列如下表所示
1.对称性与首末两端“等距离”的两个二项式系数相等,即C_n^m=C_n^(n"-" m).2.增减性与最大值 当k(n+1)/2时,C_n^k随k的增加而减小.当n是偶数时,中间的一项C_n^(n/2)取得最大值;当n是奇数时,中间的两项C_n^((n"-" 1)/2) 与C_n^((n+1)/2)相等,且同时取得最大值.探究2.已知(1+x)^n =C_n^0+C_n^1 x+...〖+C〗_n^k x^k+...+C_n^n x^n 3.各二项式系数的和C_n^0+C_n^1+C_n^2+…+C_n^n=2n.令x=1 得(1+1)^n=C_n^0+C_n^1 +...+C_n^n=2^n所以,(a+b)^n 的展开式的各二项式系数之和为2^n1. 在(a+b)8的展开式中,二项式系数最大的项为 ,在(a+b)9的展开式中,二项式系数最大的项为 . 解析:因为(a+b)8的展开式中有9项,所以中间一项的二项式系数最大,该项为C_8^4a4b4=70a4b4.因为(a+b)9的展开式中有10项,所以中间两项的二项式系数最大,这两项分别为C_9^4a5b4=126a5b4,C_9^5a4b5=126a4b5.答案:1.70a4b4 126a5b4与126a4b5 2. A=C_n^0+C_n^2+C_n^4+…与B=C_n^1+C_n^3+C_n^5+…的大小关系是( )A.A>B B.A=B C.A<B D.不确定 解析:∵(1+1)n=C_n^0+C_n^1+C_n^2+…+C_n^n=2n,(1-1)n=C_n^0-C_n^1+C_n^2-…+(-1)nC_n^n=0,∴C_n^0+C_n^2+C_n^4+…=C_n^1+C_n^3+C_n^5+…=2n-1,即A=B.答案:B
1.确定研究对象,明确哪个是解释变量,哪个是响应变量;2.由经验确定非线性经验回归方程的模型;3.通过变换,将非线性经验回归模型转化为线性经验回归模型;4.按照公式计算经验回归方程中的参数,得到经验回归方程;5.消去新元,得到非线性经验回归方程;6.得出结果后分析残差图是否有异常 .跟踪训练1.一只药用昆虫的产卵数y与一定范围内的温度x有关,现收集了6组观测数据列于表中: 经计算得: 线性回归残差的平方和: ∑_(i=1)^6?〖(y_i-(y_i ) ?)〗^2=236,64,e^8.0605≈3167.其中 分别为观测数据中的温度和产卵数,i=1,2,3,4,5,6.(1)若用线性回归模型拟合,求y关于x的回归方程 (精确到0.1);(2)若用非线性回归模型拟合,求得y关于x回归方程为 且相关指数R2=0.9522. ①试与(1)中的线性回归模型相比较,用R2说明哪种模型的拟合效果更好 ?②用拟合效果好的模型预测温度为35℃时该种药用昆虫的产卵数.(结果取整数).
2、知道手划破后简单的处理和保护方法。 活动准备: 相关图片一张。 活动过程: 1、请幼儿观察图片,提问: (1)这个小朋友的手怎么啦?(出血了) (2)好好的小手怎么会出血呢?(被东西划破了) (3)什么东西会把手划破?为什么?(玻璃片、针、铁钉、铁丝、剪刀等。因为这些东西很尖,很锋利。) (4)启发幼儿回忆:自己的手有没有被划破过,手划破了有哪些不方便。 2、讨论怎样才能使我们的小手不受伤。(平时不玩剪刀、小刀、针、玻璃片、铁片等尖利的东西。) 小结:我们周围有很多东西,有的是很尖的,有的是很锋利的,如果我们去玩这些东西,就会把手划破,给自己带来危险和许多不方便。所以小朋友们不要去玩这些东西,以免我们的手受伤,影响我们的活动和生活。
甲 方:(网红培训公司) 地 址: 法人代表: 身份证号:乙 方:(网红姓名) 性 别: 地 址: 身份证号: 甲乙双方经友好协商决定,甲方为乙方的网红培训公司,双方同意按照以下条款签订网红培训合同,并严格遵守,有关合约内容如下: 一、合同内容: 乙方聘请甲方为网红培训公司,在合同期间由甲方全权代理乙方涉及到出版、演出、广播、电视、广告、电影、录音、录像等与演艺有关的商业或非商业活动,以及与乙方公众形象有关的活动。乙方为此支付甲方网红培训费用。 二、合同期限 为期 (中文大写 )年,即 年 月 日至 年 月 日,自签约后立即生效。三、合同期内,甲方享有的权利和应尽的义务 1、 甲方应努力通过各种新闻媒体及其他方式宣传乙方,尽可能地提高乙方的知名度,通过强有力的宣传运作获得最佳效果,使乙方建立、保持良好的公众艺员形象。 2、 甲方在合同期间独家拥有乙方之名称、肖像及声音的商业和非商业的公众活动代理权,并拥有乙方录制演唱之音乐制品(含录音带、CD、VCD、LD、MP3及其他由于科技发展而使用的新型载体之音像制品)出版、发行等相关事项的代理权。
社会是由人集合而成的,而人们活动的目的往往不同,如果没有一个规矩来约束,各行其是,社会就会陷入无秩序的混乱中。因而让受教育者形成规则意识,这是所有教育的基点。培养学生的规范意识、规则意识也是《思想道德修养与法律基础》课教学的核心内容和重要目标。 思想品德教研部在网络集体备课时认为,疫情蔓延以来,不断更新的数字,不断变化的疫情实况,考验着人们的规则意识与理性。在这次抗击疫情工作中,有人无知无畏、心存侥幸,不加防护,不听劝阻;有的人无视规则,毫无理性,造谣传谣;有人无视规定,招摇过市参与聚会,给社会抗疫工作增添了不必要的麻烦。为此,教师们通过网络平台告诉学生:一个强大的国家,需要有规则意识和理性成熟的公民。特别是在疫情防控的关键时期,更不能做无视规则、失去理性的事情。按照上级部门的文件精神和通知要求,各高校都制定了相关规定,比如要求学生不得提前返校,教师要做好延期开学期间线上教学的各项准备工作等规定。大家都要严格遵守这些规定,分清是非,成为具有规则意识和理性的新时代公民。
20XX年3月-20XX年7月 XXX软件有限公司 市场渠道工作描述:Ø 负责公司渠道招商,开拓与维护,根据公司营销战略计划,协助制定部门渠道招商计划,并进行目标分解;Ø 根据各区域情况制订市场开拓及推广计划,建立客户档案,做好客户合同的签订、履行与管理工作;Ø 收集市场信息,分析掌握市场动态,定期、不定期拜访渠道,做好跟进和维护工作;Ø 配合公司销售团队完成销售任务,定期完成量化的工作要求,并进行分析与总结,完成上级安排的其他任务。校园经历:Ø 领导学生会媒体运营部会员积极参加协会活动,策划组织过“新媒体技能大赛”的活动,取得圆满成功;Ø 负责活动简讯的撰写,拟写学校刊物的文章和编辑,充分提高了写作能力和编辑能力。
2022.01~2022.08 XXX软件有限公司 新媒体运营l 新媒体营销:负责构思并且制定品牌每季度、月度营销方案。对营销方案执行。l 品牌营销:配合品牌推广资源,合作资源,扩大内容影响力,配合产品运营的日常工作。l 内容运营:负责新媒体的内容发布、粉丝互动、话题制造、活动执行。快速响应市面热点事件,对微博、微信账号的关注度及内容效果。负责企业画册、季刊、第三方刊物等内容撰写与更新。l 数据分析:负责用户数据的分析,为运营提供数据支持。通过后台反映的用户数据,分析用户的浏览喜好、浏览时间、对运营策略作出调整。通过分析活动与渠道数据,对活动与渠道进行优化。
一、我系所有学生素拓档案均由系团总支素拓部管理,只有素拓部学生干部以及各班素拓认证小组才可使用,其他无关人员不得随意翻看及借阅。若确实有需要,需翻看或借阅,须经系领导同意。 二、各班素拓小组在借阅素拓档案时必须经得素拓部负责人同意,并在相应的记录本上做好记录后方可使用,否则一律不得使用。
做一个有道德、有理想的人尊敬的各位领导、老师们、同学们:大家上午好!今天我要讲话的题目是《做一个有道德、有理想的人》。近日来,团委开展了“20**年度十佳学生”的评选,经过全校同学的投票,从15名候选人中最终评选出了“20**年度十佳学生”。他们中,有言语不凡、hold住全场的孙乐君,有待人谦和有礼、乐于助人的陈雨帆,有不断超越、追求卓越的郑熙,有温文尔雅、谦俭恭和的黄皓,还有狭路相逢、敢于亮剑的纵横辩论社员们…十佳的评选,不仅仅是为了表彰他们,分享他们的学习生活经验,体会那份真实与感动,更是为了激励更多的一中学子们奋发向上,超越梦想。在此,我代表学生会向全校同学发出倡议,我们要向十佳学生学习,做一个有道德、有理想的人。我们要做一个有道德的人。中华民族历来有崇德重德,尚德倡德的传统,常言道:“人无德不立,国无德不兴。”,强调的就是道德对于个人修身立业和国家长治久安有重要作用。怎样做一个有道德的人?我个人认为,首先要做到“勿以善小而不为,勿以恶小而为之”。
做一个有道德的人尊敬的老师们,同学们:早上好!今天我讲话的题目是《做一个有道德的人》。记得意大利诗人但丁曾说过这样一句话:“一个知识不健全的人可以用道德去弥补,而一个道德不健全的人却难于用知识去弥补。”是的,我们的国家和民族最需要的是道德高尚的知识者。我们中华民族历来崇尚道德。无论是以孔子为代表的儒家思想,还是以老子为代表的道家思想,无不都以高尚的道德做为他们的至高境界。宋代文人苏辙就曾写道:“辙生好为文,思之至深。以为文者气之所形,然文不可以学而能,气可以养而至。”这就说明,道德是做人的基本准则,只要我们能够从身边的小事做起,就会成为有道德的人。
老师们,同学们:大家早上好!今天国旗下讲话的题目是《做一个感恩的人,我能行》。同学们,当你们站在这庄严的国旗下,一起认真演唱《义勇军进行曲》时,内心是不是怀有一种感恩之情呢?那我们怎样做,才是一个懂感恩的人呢。其实,感恩,很简单。感恩就是感谢父母的养育之恩,感谢同学的陪伴,感谢老师的教诲,感谢学校丰富多彩的生活。感恩父母,我们并不难做到。给父母亲手制作一张贺卡,端一杯暖意浓浓的热茶,一盆热气腾腾的洗脚水,给父母一个灿烂甜美的微笑;这便是感恩,回到家为父母做力所能力的家务事,为父母捶捶背,这也是感恩;让我们一起将这份感恩之心延续,使父母幸福快乐!感恩老师,让我们用一颗感恩之心,答谢老师。课堂上,用一道专注的目光,一个轻轻的点头,全身心投入,专心听课,这便是感恩;下课了为老师擦一次黑板、为老师创造一个洁净的空间,看到老师,一抹淡淡的微笑,一声礼貌的“老师好”,这也是感恩;放学了,向老师挥挥手,说上一句“老师再见”,这依然是对老师的感恩。
我们中华民族是一个聪明,勤劳的民族,我们的祖先曾经为人类提供了开启世界文明之门的"四大发明",而在近百年来科学技术史上,却很少有中国人的名字。形成这种现状的原因是什么呢?我想,这跟我们民族的创新能力下降有很大的关系。科学的本质是创新,那么创新的本质又是什么呢?我认为,创新的本质是进取,是不做复制者,单纯的模仿不是创新,令人生厌的重复也只会造成原创力的降低。创新不容易但并不神秘,可以说,任何人都可以创新。当然知识越丰富的,他创新的机会就越多。可能有些同学会认为创新只是科学家才能做的事情,其实不是的。下面我就给大家讲一个真实的故事。美国有个叫李小曼的画家,他平时做事总是丢三落四,绘画时也不例外,常常是刚刚找到铅笔,又望了橡皮放在哪儿了。
3.请几组同学表演这几个的场面,其他同学做评委,从模仿表演中享受学习音乐的快乐。五.课堂小结 (阶段目标:以“我的收获”(课件十)帮助学生总结所学内容,知道音乐中,不同的音乐要素可以表现不同的人物、场面)课后反思:(课件十一)在本节音乐欣赏教学中,我坚持以“听”为核心(因为音乐是一门听觉艺术),让学生“带着问题听”、“想着听”、“动着听”、“演着听”等多元化的“听”的形式。一系列“听”的任务不仅提高学生的注意力,而且提高学生“听”的兴趣与“听”的质量。而且我创造和谐的课堂气氛,积极引导学生把对音乐的内心感受大胆地用语言表达出来,让学生主动参与音乐快乐学习的实践中去,创建出有利于学生发展的生动活泼的音乐课堂情景,让学生的了解音乐,感受音乐,融入音乐。