解析:①过原点时,直线方程为y=-34x.②直线不过原点时,可设其方程为xa+ya=1,∴4a+-3a=1,∴a=1.∴直线方程为x+y-1=0.所以这样的直线有2条,选B.答案:B4.若点P(3,m)在过点A(2,-1),B(-3,4)的直线上,则m= . 解析:由两点式方程得,过A,B两点的直线方程为(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又点P(3,m)在直线AB上,所以3+m-1=0,得m=-2.答案:-2 5.直线ax+by=1(ab≠0)与两坐标轴围成的三角形的面积是 . 解析:直线在两坐标轴上的截距分别为1/a 与 1/b,所以直线与坐标轴围成的三角形面积为1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三个顶点A(0,4),B(-2,6),C(-8,0).(1)求三角形三边所在直线的方程;(2)求AC边上的垂直平分线的方程.解析(1)直线AB的方程为y-46-4=x-0-2-0,整理得x+y-4=0;直线BC的方程为y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直线AC的方程为x-8+y4=1,整理得x-2y+8=0.(2)线段AC的中点为D(-4,2),直线AC的斜率为12,则AC边上的垂直平分线的斜率为-2,所以AC边的垂直平分线的方程为y-2=-2(x+4),整理得2x+y+6=0.
3.下结论.依据均值和方差做出结论.跟踪训练2. A、B两个投资项目的利润率分别为随机变量X1和X2,根据市场分析, X1和X2的分布列分别为X1 2% 8% 12% X2 5% 10%P 0.2 0.5 0.3 P 0.8 0.2求:(1)在A、B两个项目上各投资100万元, Y1和Y2分别表示投资项目A和B所获得的利润,求方差D(Y1)和D(Y2);(2)根据得到的结论,对于投资者有什么建议? 解:(1)题目可知,投资项目A和B所获得的利润Y1和Y2的分布列为:Y1 2 8 12 Y2 5 10P 0.2 0.5 0.3 P 0.8 0.2所以 ;; 解:(2) 由(1)可知 ,说明投资A项目比投资B项目期望收益要高;同时 ,说明投资A项目比投资B项目的实际收益相对于期望收益的平均波动要更大.因此,对于追求稳定的投资者,投资B项目更合适;而对于更看重利润并且愿意为了高利润承担风险的投资者,投资A项目更合适.
对于离散型随机变量,可以由它的概率分布列确定与该随机变量相关事件的概率。但在实际问题中,有时我们更感兴趣的是随机变量的某些数字特征。例如,要了解某班同学在一次数学测验中的总体水平,很重要的是看平均分;要了解某班同学数学成绩是否“两极分化”则需要考察这个班数学成绩的方差。我们还常常希望直接通过数字来反映随机变量的某个方面的特征,最常用的有期望与方差.二、 探究新知探究1.甲乙两名射箭运动员射中目标靶的环数的分布列如下表所示:如何比较他们射箭水平的高低呢?环数X 7 8 9 10甲射中的概率 0.1 0.2 0.3 0.4乙射中的概率 0.15 0.25 0.4 0.2类似两组数据的比较,首先比较击中的平均环数,如果平均环数相等,再看稳定性.假设甲射箭n次,射中7环、8环、9环和10环的频率分别为:甲n次射箭射中的平均环数当n足够大时,频率稳定于概率,所以x稳定于7×0.1+8×0.2+9×0.3+10×0.4=9.即甲射中平均环数的稳定值(理论平均值)为9,这个平均值的大小可以反映甲运动员的射箭水平.同理,乙射中环数的平均值为7×0.15+8×0.25+9×0.4+10×0.2=8.65.
解析:当a0时,直线ax-by=1在x轴上的截距1/a0,在y轴上的截距-1/a>0.只有B满足.故选B.答案:B 3.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:设所求直线方程为x-2y+c=0,把点(1,0)代入可求得c=-1.所以所求直线方程为x-2y-1=0.故选A.4.已知两条直线y=ax-2和3x-(a+2)y+1=0互相平行,则a=________.答案:1或-3 解析:依题意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直线.(1)求实数m的范围;(2)若该直线的斜率k=1,求实数m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直线,则m2-3m+2与m-2不能同时为0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.
课前小测1.思考辨析(1)若Sn为等差数列{an}的前n项和,则数列Snn也是等差数列.( )(2)若a1>0,d<0,则等差数列中所有正项之和最大.( )(3)在等差数列中,Sn是其前n项和,则有S2n-1=(2n-1)an.( )[答案] (1)√ (2)√ (3)√2.在项数为2n+1的等差数列中,所有奇数项的和为165,所有偶数项的和为150,则n等于( )A.9 B.10 C.11 D.12B [∵S奇S偶=n+1n,∴165150=n+1n.∴n=10.故选B项.]3.等差数列{an}中,S2=4,S4=9,则S6=________.15 [由S2,S4-S2,S6-S4成等差数列得2(S4-S2)=S2+(S6-S4)解得S6=15.]4.已知数列{an}的通项公式是an=2n-48,则Sn取得最小值时,n为________.23或24 [由an≤0即2n-48≤0得n≤24.∴所有负项的和最小,即n=23或24.]二、典例解析例8.某校新建一个报告厅,要求容纳800个座位,报告厅共有20排座位,从第2排起后一排都比前一排多两个座位. 问第1排应安排多少个座位?分析:将第1排到第20排的座位数依次排成一列,构成数列{an} ,设数列{an} 的前n项和为S_n。
1.判断正误(正确的打“√”,错误的打“×”)(1)函数f (x)在区间(a,b)上都有f ′(x)<0,则函数f (x)在这个区间上单调递减. ( )(2)函数在某一点的导数越大,函数在该点处的切线越“陡峭”. ( )(3)函数在某个区间上变化越快,函数在这个区间上导数的绝对值越大.( )(4)判断函数单调性时,在区间内的个别点f ′(x)=0,不影响函数在此区间的单调性.( )[解析] (1)√ 函数f (x)在区间(a,b)上都有f ′(x)<0,所以函数f (x)在这个区间上单调递减,故正确.(2)× 切线的“陡峭”程度与|f ′(x)|的大小有关,故错误.(3)√ 函数在某个区间上变化的快慢,和函数导数的绝对值大小一致.(4)√ 若f ′(x)≥0(≤0),则函数f (x)在区间内单调递增(减),故f ′(x)=0不影响函数单调性.[答案] (1)√ (2)× (3)√ (4)√例1. 利用导数判断下列函数的单调性:(1)f(x)=x^3+3x; (2) f(x)=sinx-x,x∈(0,π); (3)f(x)=(x-1)/x解: (1) 因为f(x)=x^3+3x, 所以f^' (x)=〖3x〗^2+3=3(x^2+1)>0所以f(x)=x^3+3x ,函数在R上单调递增,如图(1)所示
一、 问题导学前面两节所讨论的变量,如人的身高、树的胸径、树的高度、短跑100m世界纪录和创纪录的时间等,都是数值变量,数值变量的取值为实数.其大小和运算都有实际含义.在现实生活中,人们经常需要回答一定范围内的两种现象或性质之间是否存在关联性或相互影响的问题.例如,就读不同学校是否对学生的成绩有影响,不同班级学生用于体育锻炼的时间是否有差别,吸烟是否会增加患肺癌的风险,等等,本节将要学习的独立性检验方法为我们提供了解决这类问题的方案。在讨论上述问题时,为了表述方便,我们经常会使用一种特殊的随机变量,以区别不同的现象或性质,这类随机变量称为分类变量.分类变量的取值可以用实数表示,例如,学生所在的班级可以用1,2,3等表示,男性、女性可以用1,0表示,等等.在很多时候,这些数值只作为编号使用,并没有通常的大小和运算意义,本节我们主要讨论取值于{0,1}的分类变量的关联性问题.
温故知新 1.离散型随机变量的定义可能取值为有限个或可以一一列举的随机变量,我们称为离散型随机变量.通常用大写英文字母表示随机变量,例如X,Y,Z;用小写英文字母表示随机变量的取值,例如x,y,z.随机变量的特点: 试验之前可以判断其可能出现的所有值,在试验之前不可能确定取何值;可以用数字表示2、随机变量的分类①离散型随机变量:X的取值可一、一列出;②连续型随机变量:X可以取某个区间内的一切值随机变量将随机事件的结果数量化.3、古典概型:①试验中所有可能出现的基本事件只有有限个;②每个基本事件出现的可能性相等。二、探究新知探究1.抛掷一枚骰子,所得的点数X有哪些值?取每个值的概率是多少? 因为X取值范围是{1,2,3,4,5,6}而且"P(X=m)"=1/6,m=1,2,3,4,5,6.因此X分布列如下表所示
1.对称性与首末两端“等距离”的两个二项式系数相等,即C_n^m=C_n^(n"-" m).2.增减性与最大值 当k(n+1)/2时,C_n^k随k的增加而减小.当n是偶数时,中间的一项C_n^(n/2)取得最大值;当n是奇数时,中间的两项C_n^((n"-" 1)/2) 与C_n^((n+1)/2)相等,且同时取得最大值.探究2.已知(1+x)^n =C_n^0+C_n^1 x+...〖+C〗_n^k x^k+...+C_n^n x^n 3.各二项式系数的和C_n^0+C_n^1+C_n^2+…+C_n^n=2n.令x=1 得(1+1)^n=C_n^0+C_n^1 +...+C_n^n=2^n所以,(a+b)^n 的展开式的各二项式系数之和为2^n1. 在(a+b)8的展开式中,二项式系数最大的项为 ,在(a+b)9的展开式中,二项式系数最大的项为 . 解析:因为(a+b)8的展开式中有9项,所以中间一项的二项式系数最大,该项为C_8^4a4b4=70a4b4.因为(a+b)9的展开式中有10项,所以中间两项的二项式系数最大,这两项分别为C_9^4a5b4=126a5b4,C_9^5a4b5=126a4b5.答案:1.70a4b4 126a5b4与126a4b5 2. A=C_n^0+C_n^2+C_n^4+…与B=C_n^1+C_n^3+C_n^5+…的大小关系是( )A.A>B B.A=B C.A<B D.不确定 解析:∵(1+1)n=C_n^0+C_n^1+C_n^2+…+C_n^n=2n,(1-1)n=C_n^0-C_n^1+C_n^2-…+(-1)nC_n^n=0,∴C_n^0+C_n^2+C_n^4+…=C_n^1+C_n^3+C_n^5+…=2n-1,即A=B.答案:B
1.确定研究对象,明确哪个是解释变量,哪个是响应变量;2.由经验确定非线性经验回归方程的模型;3.通过变换,将非线性经验回归模型转化为线性经验回归模型;4.按照公式计算经验回归方程中的参数,得到经验回归方程;5.消去新元,得到非线性经验回归方程;6.得出结果后分析残差图是否有异常 .跟踪训练1.一只药用昆虫的产卵数y与一定范围内的温度x有关,现收集了6组观测数据列于表中: 经计算得: 线性回归残差的平方和: ∑_(i=1)^6?〖(y_i-(y_i ) ?)〗^2=236,64,e^8.0605≈3167.其中 分别为观测数据中的温度和产卵数,i=1,2,3,4,5,6.(1)若用线性回归模型拟合,求y关于x的回归方程 (精确到0.1);(2)若用非线性回归模型拟合,求得y关于x回归方程为 且相关指数R2=0.9522. ①试与(1)中的线性回归模型相比较,用R2说明哪种模型的拟合效果更好 ?②用拟合效果好的模型预测温度为35℃时该种药用昆虫的产卵数.(结果取整数).
1、**东升巷小区老旧小区改造项目 项目位于**东大街东升巷,小区建成于1993年,共有楼房14栋,居民584户,总建筑面积约48000平方米,项目总投资1223.5万元,拟对该老旧小区的道路、休闲广场、绿化、雨污网管、室外照明及垃圾收集点等进行改造。20**年8月中旬街主要领导在小桥社区召开改造推进会,要求社区对改造范围内居民进行上户宣传,积极讨论解决项目前期矛盾并多方了解设计内容争取做到一步到位。目前该小区改造设计已通过图审审核,现正在编制项目概算,下步将采用EPC模式进行公开招投标。
一、新区建设基本情况拥挤,是X老城区给人的印象,X平方公里却居住近X万人口,人口密度在我市位居第一;同时,由于历史原因,导致老县城布局不够合理,功能不够齐全,城市建设的步伐滞后于经济的快速振兴,满足不了城市发展和人居需要。2017年,县委、县政府在充分调研、听取民意的基础上,决定进一步实施“东进西扩”战略,拉大城市框架,完善功能设施,提升城市品位。新区位于X处,距老县城X公里,是县城总体规划中城市发展三大组团之一,新区规划总用地面积X平方公里,总投资为X亿元,共分行政中心、生活居住和旅游度假三个功能区,以行政中心为带动,覆盖商业金融、文化休闲等,计划分三期开发建设,目前新区已建成区面积X平方公里。
拥挤,是X老城区给人的印象,X平方公里却居住近X万人口,人口密度在我市位居第一;同时,由于历史原因,导致老县城布局不够合理,功能不够齐全,城市建设的步伐滞后于经济的快速振兴,满足不了城市发展和人居需要。20**年,县委、县政府在充分调研、听取民意的基础上,决定进一步实施“东进西扩”战略,拉大城市框架,完善功能设施,提升城市品位。新区位于X处,距老县城X公里,是县城总体规划中城市发展三大组团之一,新区规划总用地面积X平方公里,总投资为X亿元,共分行政中心、生活居住和旅游度假三个功能区,以行政中心为带动,覆盖商业金融、文化休闲等,计划分三期开发建设,目前新区已建成区面积X平方公里。
在实际工作中,一是积极开展法治宣传。区法学会积极以“法律服务进基层”为载体,组织会员积极投身法律“六进”活动。先后与区综治办、区610办和区文体旅游局等单位利用群众性广场文化活动,开展多次集中法制宣传与服务,共计展出各类法律宣传展板×余块儿、标语条幅×余条,服务群众两万余人次。二是积极参加省、市法学会组织的课题建议活动。对于上级法学会的课题招标,区法学会高度重视,在河南省法学会征集20**年度研究课题建议时,积极报送了《公安保密:要“喊”在口上“落”在脚下》的议题建议;在市法学会征集法治宣讲主题建议时,积极报送了《有关民间借贷与非法吸收公众存款案件的合理界定,以及民间借贷纠纷案件的预防和化解》的主题建议。同时,针对当前社会矛盾纠纷预防和化解工作,加强了对行业调解、司法调解的研究和探索。三是积极参与社会治理。区法学会积极组织会员参与多层次、多形式的平安创建和法治创建活动
一、新区建设基本情况 拥挤,是X老城区给人的印象,X平方公里却居住近X万人口,人口密度在我市位居第一;同时,由于历史原因,导致老县城布局不够合理,功能不够齐全,城市建设的步伐滞后于经济的快速振兴,满足不了城市发展和人居需要。20**年,县委、县政府在充分调研、听取民意的基础上,决定进一步实施“东进西扩”战略,拉大城市框架,完善功能设施,提升城市品位。新区位于X处,距老县城X公里,是县城总体规划中城市发展三大组团之一,新区规划总用地面积X平方公里,总投资为X亿元,共分行政中心、生活居住和旅游度假三个功能区,以行政中心为带动,覆盖商业金融、文化休闲等,计划分三期开发建设,目前新区已建成区面积X平方公里。
2.培养幼儿自主运动能力。 3.发展幼儿钻,爬,跳,平衡等基本活动能力。 活动准备:垫子圈滑板竹梯体操棒沙包玩具轮胎若干 活动流程: 创设环境:师生共同布置-->调动身心:做准备操-->基本活动:分散活动 -->放松活动:收拾器械-->集中活动-->分散活动 活动过程: 一、设环境: 1. 小动物来和我们一起锻炼身体,看那些小动物来了?(1号小狗,2号小乌龟,3号小兔,4号小猴)
学习活动:新建小区一、活动目标: 1、根据不同的画面进行讲述,并列出相应的算式,从而感知加减法算式表达的数量关系。 2、培养幼儿积极的思维能力,发展思维的灵活性。3、积极探索数学活动,乐于讲述探索过程。二、活动准备:1、教具:七座房子、三幅画、数字1-6、符号 、-、=。2、人手三幅图片,笔、鞭炮6串、自制金牌、银牌若干。
第一条:合同的主体: 甲方:深圳**物业管理有限公司 (以下简称甲方)乙方:(以下简称乙方)第二条:合同宗旨及原则:本合同经双方友好协商,本着平等互利等价有偿的原则,就乙方对甲方管辖的 提供日常保洁服务,协商如下。第三条:合同的范围本合同规定的服务范围、作业内容及清扫周期以《深圳市建筑物清洁保养质量标准》、《物业“五级”清洁卫生服务标准》及《清洁服务标准作业指导书》为准;清洁服务标准作业指导书由甲方提供,乙方按照上述二标一书要求认真执行。第四条:合同履行期限:本合同____及____自____年____月____日至____年____月____日止,服务期限为____年。第五条:合同双方的责任:一、甲方权力和义务:1.按合同约定向乙方支付保洁服务费。2.无偿为乙方提供仅限于服务区域内保洁工作所需用的水、电。3.指派专人负责对乙方保洁工作质量及时监督检查,发现质量问题及时要求乙方整改,直至达到符合服务质量标准。4.教育保洁工作人员遵守甲方物业管辖区域内的各项服务管理制度,爱护甲方物业服务区域内所有公共设施设备。
本合同依据中华人民共和国法律、《深圳经济特区土地管理条例》和《深圳经济特区商品房产管理规定》制定。 第一条 甲方经市府国土局批准,取得位于深圳市 用地面积 平方米的土地使用权。 地块编号: 使用年期 年,自 年 月 日起至 年 月 日止。甲方在上述土地兴建楼宇,系定名为 ,由甲方预售。 第二条 乙方自愿向甲方定购上述楼宇的第 幢 号(第 层)。建筑面积 平方米,土地面积/平方米、(其中:基底分摊 平方米、公用分摊 平方米、其他 平方米)。第三条 甲方定于 年 月 日交付乙方使用。 如遇下列特殊原因可延期交付使用,但不得超过 天: 1.人力不可抗拒的自然灾害; 2.施工中遇到异常困难及重大技术问题不能及时解决; 3.其他非甲方所能控制的因素。 上述原因必须凭深圳市有关主管部门的证明文件为依据,方能延期交付使用。
收集xx家人在公司工作经历和成长历程,对他爱岗敬业、勤奋好学的精神给予高度评价。