教学目标:借助有趣真实的情景,激发学生的参与统计活动的兴趣,培养学生的统计意识。教学重点:掌握简单的数据收集和整理方法教具学具:课件、统计表、记录单、答题卡。教学设计:一、创设情境,揭示问题。同学们你们喜欢旅游吗?今年暑假你想去哪里旅游?和老师、同学们说一说,可老师想知道你们是怎样去的?是做什么交通工具去的?那么你们知道自己买的是什么票吗?老师帮你们弄清楚这个问题。二、探究发现,建立模型。(一)调查本班的学生的身高情况。1:、以小组为单位,展开调查并把结果写在记录单上2:各族小组长汇报。3:再把各小组的调查情况进行汇总。
(1)喜欢哪种动物的人最多?(2)一共有多少人投票?(3)下面哪一组和上图所表示的数据完全一样?2、发货的工厂给我们推荐了几款比较受欢迎的鞋子,这里有一些调查的数据,你准备采用什么方法来决定这几种款式要进的数量?做一做!(先独立完成再与同伴交流自己的方法)(设计理念:通过本节课创设的情景,很自然地引出一个习题和课下作业,并不是很生硬地为了练习而练习,而是让学生感受到现实存在的问题需要利用所学的知识去解决,这样不仅能巩固所学知识,还能让学生再次体会统计的必要性。)说板书设计:板书设计在教学中起到了画龙点睛的作用,因此,我设计概括点拨式的板书来归纳本节课的中心内容,这样设计层次分明、重点突出,有利于巩固学生对新知识的掌握。
一、说教材的地位和作用。《等量关系》是北师大版四年级下册第五单元《认识方程》的第二节内容。学生之前在解决问题的学习中,对等量关系也有了初步的感知,这是学习本课的基础。本课也是后面学习方程和列方程解决问题的基础。方程的本质是描述现实生活中的等量关系,列方程解决问题的关键是找等量关系。鉴于等量关系的重要作用,教材为等量关系安排了独立的课时进行学习,突出体现了核心知识的作用与价值。二、说教学目标。根据教材的编写特点和学生的实际情况,确定本节课的目标如下:1.知识与技能:结合已有经验和现实情境,体会等量关系,能用不同的形式表示等量关系。2.过程与方法:采用多种方法,如跷跷板、口头语言、画图、写式子等,展开形式丰富的表示现实中等量关系的活动,并通过这些方法之间的相互转化,理解等量关系。
在展示交流,精讲点拨环节学生答题过程中老师巡视,发现不同的方法让学生去板演。1、学生展示学生展示不同的方法,并进行讲解,让学生充分说出自己的思路及解题过程。在这一环节,学生进行了充分的互动,有质疑,有解疑,有纠错,有评价,有反馈,。2、教师根据学生的方法及时利用多媒体进行演示,让学生更加直观的理解不同的解题思路。然后变换题中的条件,让学生自己列方程解答。3、说一说生活中那些情境也可以用类似的等量关系式解答,这一设计让数学回归生活,加强了数学与生活的联系。在达标检测,强化巩固环节老师以课本为主,让学生完成课本练一练的2,4基础题。又进行了拓展,出了一道稍有难度的题进行拓展练习。既巩固了基础,又做到了分层优化。在小结评价,自我反思环节让学生说说本节课的收获,可以是学习上的,也可以是习惯上的。让学生进行了自我反思,反思自己的不足,加以改正。
3.设计实验。怎样测量一粒黄豆的体积。这是在第二题的基础上进行的一个设计实验,再次回到“有趣的测量”,让学生不仅会计算,还要会自己想办法测量生活中的很多不规则物体的体积,这也是我们这节课要达到的目的。练习完之后教师再适时将学生带进数学万花筒,感受两千多年前阿基米德的风采,激发了学生对数学的兴趣,增强他们主动探索科学知识的意识。(四)、总结回顾评价反思在这一环节让学生讲一讲收获、谈一谈感受,让学生自己评价自己,使学生体验到成功探索和解决问题的乐趣,树立学好数学的信心,为学生自主探索提供更为广阔的空间六、说板书设计本节课我采用重点内容提纲式板书,简单明了,重点突出。利用不同色彩的区分吸引学生的注意力,突出“转化”这一重要思想。
依据本节课的知识结构与学生的认知规律,这节课我是这样安排的:第一个环节:谈话交流,引入课题。先出示一个正方体。让学生说一说对正方体的认识,再让学生观察能看到几个面?分别是什么面?接着教师引出,既然同学们最多只能看见正方体的3个面,所以老师说这个正方体只有3个面露在外面。经过学生思考,确定还有两个面露在外面,然后出示课题-----露在外面的面。第二个环节:探索新知,发现规律。在这个环节中,我首先呈现一个摆放在墙角的小正方体:让孩子们观察有几个面露在外面,是哪几个面?这是一个简单的问题,学生通过观察都可以看到露在外面的面分别是上面,前面和侧面。然后计算露在外面的面的面积。学生自己尝试计算时,都能找到方法:计算一个小正方形的面积再乘以露在外面的面数就可以了。
设计意图:通过观察,能够发现并概括规律。培养学生的观察和归纳能力。校对表格后,让学生猜想一下天天、晶晶和欢欢的轮廓图谁和乐乐更像呢?为什么?设计意图:通过猜一猜,让学生带着猜测进行下一个活动。活动3:动手操作画出三只小猫的轮廓。(1)明确小组分工,2个人画天天、2个人画晶晶、2个人画欢欢,独立操作画图,根据每只小猫轮廓的点的数对用铅笔描点,并用直尺画出它们的轮廓图。(2)观察比较四幅轮廓图,小组讨论这三只小猫的轮廓图与乐乐的不同点,交流总结规律。说说哪只长得像乐乐,为什么?(3)集中反馈,验证猜测。设计意图:通过画一画让学生验证自己的猜测,体会用数对的方法将图形放大,并且引导学生发现当数对的两个数扩大相同的倍数时,画出来的图形和原来像。这样通过使学生动手实践,自主探究,合作交流,培养了学生的操作画图能力和概括归纳能力,有效的落实了本节课的教学目标。
一.材料 小山洞、与幼儿人数相等的动物玩具,小猫头饰若干,猫妈妈的胸饰一只,音乐磁带一盒。二.过程(一)以游戏的口吻和形式导入活动1.教师:“小猫们,今天妈妈带你们到那边森林里去玩,我们一边唱歌一边走吧!”(伴随《蝴蝶花》的音乐,幼儿做律动进入场景)2.教师:“草地上真舒服,小猫们和妈妈一起坐下来休息一会儿,妈妈给你们讲一个故事。”3.故事:从前,有一只可爱的小兔跟着妈妈一起到森林里去采蘑菇,它看到美丽的鲜花,漂亮的蝴碟可开心了。它一会儿去闻闻鲜花,一会儿扑蝴蝶,结果找不着妈妈啦。天渐渐地黑了,小兔找不着妈妈多伤心呀,它大声地喊:“妈妈,妈妈……”。
解析:当a0时,直线ax-by=1在x轴上的截距1/a0,在y轴上的截距-1/a>0.只有B满足.故选B.答案:B 3.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:设所求直线方程为x-2y+c=0,把点(1,0)代入可求得c=-1.所以所求直线方程为x-2y-1=0.故选A.4.已知两条直线y=ax-2和3x-(a+2)y+1=0互相平行,则a=________.答案:1或-3 解析:依题意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直线.(1)求实数m的范围;(2)若该直线的斜率k=1,求实数m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直线,则m2-3m+2与m-2不能同时为0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.
(1)几何法它是利用图形的几何性质,如圆的性质等,直接求出圆的圆心和半径,代入圆的标准方程,从而得到圆的标准方程.(2)待定系数法由三个独立条件得到三个方程,解方程组以得到圆的标准方程中三个参数,从而确定圆的标准方程.它是求圆的方程最常用的方法,一般步骤是:①设——设所求圆的方程为(x-a)2+(y-b)2=r2;②列——由已知条件,建立关于a,b,r的方程组;③解——解方程组,求出a,b,r;④代——将a,b,r代入所设方程,得所求圆的方程.跟踪训练1.已知△ABC的三个顶点坐标分别为A(0,5),B(1,-2),C(-3,-4),求该三角形的外接圆的方程.[解] 法一:设所求圆的标准方程为(x-a)2+(y-b)2=r2.因为A(0,5),B(1,-2),C(-3,-4)都在圆上,所以它们的坐标都满足圆的标准方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圆的标准方程是(x+3)2+(y-1)2=25.
情境导学前面我们已讨论了圆的标准方程为(x-a)2+(y-b)2=r2,现将其展开可得:x2+y2-2ax-2bx+a2+b2-r2=0.可见,任何一个圆的方程都可以变形x2+y2+Dx+Ey+F=0的形式.请大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲线是不是圆?下面我们来探讨这一方面的问题.探究新知例如,对于方程x^2+y^2-2x-4y+6=0,对其进行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因为任意一点的坐标 (x,y) 都不满足这个方程,所以这个方程不表示任何图形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通过恒等变换为圆的标准方程,这表明形如x2+y2+Dx+Ey+F=0的方程不一定是圆的方程.一、圆的一般方程(1)当D2+E2-4F>0时,方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)为圆心,1/2 √(D^2+E^2 "-" 4F)为半径的圆,将方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)当D2+E2-4F=0时,方程x2+y2+Dx+Ey+F=0,表示一个点(-D/2,-E/2)(3)当D2+E2-4F0);
【答案】B [由直线方程知直线斜率为3,令x=0可得在y轴上的截距为y=-3.故选B.]3.已知直线l1过点P(2,1)且与直线l2:y=x+1垂直,则l1的点斜式方程为________.【答案】y-1=-(x-2) [直线l2的斜率k2=1,故l1的斜率为-1,所以l1的点斜式方程为y-1=-(x-2).]4.已知两条直线y=ax-2和y=(2-a)x+1互相平行,则a=________. 【答案】1 [由题意得a=2-a,解得a=1.]5.无论k取何值,直线y-2=k(x+1)所过的定点是 . 【答案】(-1,2)6.直线l经过点P(3,4),它的倾斜角是直线y=3x+3的倾斜角的2倍,求直线l的点斜式方程.【答案】直线y=3x+3的斜率k=3,则其倾斜角α=60°,所以直线l的倾斜角为120°.以直线l的斜率为k′=tan 120°=-3.所以直线l的点斜式方程为y-4=-3(x-3).
解析:①过原点时,直线方程为y=-34x.②直线不过原点时,可设其方程为xa+ya=1,∴4a+-3a=1,∴a=1.∴直线方程为x+y-1=0.所以这样的直线有2条,选B.答案:B4.若点P(3,m)在过点A(2,-1),B(-3,4)的直线上,则m= . 解析:由两点式方程得,过A,B两点的直线方程为(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又点P(3,m)在直线AB上,所以3+m-1=0,得m=-2.答案:-2 5.直线ax+by=1(ab≠0)与两坐标轴围成的三角形的面积是 . 解析:直线在两坐标轴上的截距分别为1/a 与 1/b,所以直线与坐标轴围成的三角形面积为1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三个顶点A(0,4),B(-2,6),C(-8,0).(1)求三角形三边所在直线的方程;(2)求AC边上的垂直平分线的方程.解析(1)直线AB的方程为y-46-4=x-0-2-0,整理得x+y-4=0;直线BC的方程为y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直线AC的方程为x-8+y4=1,整理得x-2y+8=0.(2)线段AC的中点为D(-4,2),直线AC的斜率为12,则AC边上的垂直平分线的斜率为-2,所以AC边的垂直平分线的方程为y-2=-2(x+4),整理得2x+y+6=0.
一.说教材我今天说课的内容是义务教育课程标准北师大版七年级下册第四单元第二节的《用关系式表示的变量间关系》。在上节课的学习中学生已通过分析表格中的数据,感受到变量之间的相依关系,并用自己的语言加以描述,初步具有了有条理的思考和表达的能力,为本节的深入学习奠定了基础。二.说教学目标本节课根据新的教学理念和学生需要掌握的知识,确立本节课的三种教学目标:知识与能力目标:根据具体情况,能用适当的函数表示方法刻画简单实际问题中变量之间的关系,能确定简单实际问题中函数自变量的取值范围,并会求函数值。过程与方法目标:经历探索某些图形中变量之间的关系的过程,进一步体会一个变量对另一个变量的影响,发展符号感。情感态度与价值观目标:通过研究,学习培养抽象思维能力和概括能力,通过对自变量和因变量关系的表达,培养数学建模能力,增强应用意识。
演讲稿频道《国旗下的讲话演讲稿:学会设计人生的价值观》,希望大家喜欢。各位尊敬的老师,亲爱的同学们:大家上午好!同学们,人生的目标不妨定的高远些,如果经过全力打拼,没有实现,那么至少也要比目标定的太低的人实现得多。林肯曾经说过:“喷泉的高度不会超过他的源头,一个人的事业也是这样,他的成就绝不会超过他的信念”。当拿破仑还是个少尉的时候,工作之余,他的同伴们便开始寻欢作乐,去游玩或找女人。他却在埋头读书,如饥似渴地读那些对他将来有用的东西:历史、战争、哲学、文化、法律、天文、地理、气象学等等。他曾说过:“不想当元帅的士兵不是个好士兵”。
甲方: 乙方:xxx广告设计有限公司 1、现就甲方所委托的 设计事项,乙方接受设计委托,就委托事项,双方经协商一致,并依据《中华人民共和国合同法》,签订本合同,双方承诺信守执行:一、委托事项甲方委托乙方进行 共计 项设计事务。具体设计项目有:二、付款方式1.甲方须在合同签订之日起三个工作日内付给乙方 委托设计总费用的50%,合计人民币 (大写: )元整付给乙方,原则上,乙方将在收到甲方的款项后启动相关设计工作。 2.项目设计确认完成后,甲方需在三天内签名或盖章确认(以传真或扫描件方式确认同样有效),确认后甲方应付乙方设计费用的余款 2500( )元整。3.乙方收款账户信息:开户行号:江苏长江商业银行姜堰支行银行卡号:6231 xxx 0198 4662 户名:钱哲辉
甲方(委托方): 乙方(执行方): xx计机构根据《中华人民共和国合同法》及国家有关法规规定,结合甲方委托乙方设计项目的具体情况,为确保本设计项目顺利完成,经甲乙双方协商一致,签订本合同,共同遵守。一、设计内容及方案数1 、提供LOGO图形设计,中英文标准字设计。2 、提供_____个设计方案,直至满意为止。二、设计周期1 、乙方应在_____个工作日完成设计初稿(双方另行约定的除外)。在_____个工作日完成稿件修改,若甲方校稿时间超过5个工作日或因甲方反复提出修改意见(但乙方设计质量明显不好或不能达到合同要求目的除外)导致乙方工作不能按时完成时,可延期交付时间,延期时间由双方协商确定。2 、如果是乙方单方的原因导致不能如期交付初稿,每日的违约金以百分之三计算,从设计费用里面直接扣除。三、设计费用LOGO设计费用为:人民币¥_______元整(大写:____________________)。 四、付款方式 1 、设计费分 2 次付清。2 、本合同签订后,甲方即向乙方支付合同总费用的40 %,即人民币¥_______元整(大写:____________________)。 3 、LOGO设计完成,甲方应在两天内支付合同余款60 %,即人民币¥_______元整(大写:____________________)。乙方及时交付电子版源文件。
依据《中华人民共和国合同法》和有关法规的规定,乙方接受甲方的委托,就委托设计事项,双方经协商一致,签订本合同,信守执行:一、合同内容及要求: 。 二、设计与制作费用:设计与制作费用总计为:人民币¥ 元,(大写: 元整)。 三、付款方式:1、甲方需在合同签订时付委托设计与制作总费用的 %,即人民币¥ 元整,(大写: )。3、乙方将设计制作图交付甲方时,甲方需向乙方支付合同余款,即人民币¥ 元整,(大写: )。 四、设计与制作作品的时间及交付方式:
三、主要工作: 本学期教务处继续抓好教学管理,规范教学过程,加强教学指导,加大考核力度。群策群力、千方百计提高教学质量。 1、抓好常规教学的管理 ⑴、切实把好教学流程,规范教学秩序。上课期间(包括上晚辅导期间)禁止使用多媒体播放与教学无关的视频影像。 ⑵、规范教学过程,对备课、上课、作业批改、课后辅导、单元验收、学科竞赛等明确要求,认真检查、指导。检查作业批改两次,教务处设专人检查,记录。
一、情境导入神舟十号是中国神舟号系列飞船之一,主要由推进舱(服务舱)、返回舱、轨道舱组成.神舟十号在酒泉卫星发射中心“921工位”,于2013年6月11日17时38分02.666秒发射,由长征二号F改进型运载火箭(遥十)“神箭”成功发射.在轨飞行十五天左右,加上发射与返回,其中停留天宫一号十二天,共搭载三位航天员——聂海胜、张晓光、王亚平.6月13日与天宫一号进行对接.6月26日回归地球.要读懂这段报导,你认为要知道哪些名称和术语的含义?二、合作探究探究点一:定义 下列语句属于定义的是()A.明天是晴天B.长方形的四个角都是直角C.等角的补角相等D.平行四边形是两组对边分别平行的四边形解析:作出正确选择的关键是理解定义的含义.A是对天气的预测,B是描述长方形的性质,C是描述补角的性质.只有D符合定义的概念.故选D.方法总结:定义指的是对术语和名称的含义的描述,是对一个事物区分于其他事物的本质特征的描述,而不是对其性质的判断.