提供各类精美PPT模板下载
当前位置:首页 > Word文档 >

在黄河流域生态保护和法治调研执法监督座谈会上的讲话范文

  • 人教A版高中数学必修二古典概型和概率的基本性质教学设计

    新知讲授(一)——古典概型 对随机事件发生可能性大小的度量(数值)称为事件的概率。我们将具有以上两个特征的试验称为古典概型试验,其数学模型称为古典概率模型,简称古典概型。即具有以下两个特征:1、有限性:样本空间的样本点只有有限个;2、等可能性:每个样本点发生的可能性相等。思考一:下面的随机试验是不是古典概型?(1)一个班级中有18名男生、22名女生。采用抽签的方式,从中随机选择一名学生,事件A=“抽到男生”(2)抛掷一枚质地均匀的硬币3次,事件B=“恰好一次正面朝上”(1)班级中共有40名学生,从中选择一名学生,即样本点是有限个;因为是随机选取的,所以选到每个学生的可能性都相等,因此这是一个古典概型。

  • 人教A版高中数学必修二圆柱、圆锥、圆台和球的表面积与体积教学设计

    1.圆柱、圆锥、圆台的表面积与多面体的表面积一样,圆柱、圆锥、圆台的表面积也是围成它的各个面的面积和。利用圆柱、圆锥、圆台的展开图如图,可以得到它们的表面积公式:2.思考1:圆柱、圆锥、圆台的表面积之间有什么关系?你能用圆柱、圆锥、圆台的结构特征来解释这种关系吗?3.练习一圆柱的一个底面积是S,侧面展开图是一个正方体,那么这个圆柱的侧面积是( )A 4πS B 2πS C πS D 4.练习二:如图所示,在边长为4的正三角形ABC中,E,F分别是AB,AC的中点,D为BC的中点,H,G分别是BD,CD的中点,若将正三角形ABC绕AD旋转180°,求阴影部分形成的几何体的表面积.5. 圆柱、圆锥、圆台的体积对于柱体、锥体、台体的体积公式的认识(1)等底、等高的两个柱体的体积相同.(2)等底、等高的圆锥和圆柱的体积之间的关系可以通过实验得出,等底、等高的圆柱的体积是圆锥的体积的3倍.

  • 人教版高中数学选择性必修二等差数列的前n项和公式(1)教学设计

    高斯(Gauss,1777-1855),德国数学家,近代数学的奠基者之一. 他在天文学、大地测量学、磁学、光学等领域都做出过杰出贡献. 问题1:为什么1+100=2+99=…=50+51呢?这是巧合吗?试从数列角度给出解释.高斯的算法:(1+100)+(2+99)+…+(50+51)= 101×50=5050高斯的算法实际上解决了求等差数列:1,2,3,…,n,"… " 前100项的和问题.等差数列中,下标和相等的两项和相等.设 an=n,则 a1=1,a2=2,a3=3,…如果数列{an} 是等差数列,p,q,s,t∈N*,且 p+q=s+t,则 ap+aq=as+at 可得:a_1+a_100=a_2+a_99=?=a_50+a_51问题2: 你能用上述方法计算1+2+3+… +101吗?问题3: 你能计算1+2+3+… +n吗?需要对项数的奇偶进行分类讨论.当n为偶数时, S_n=(1+n)+[(2+(n-1)]+?+[(n/2+(n/2-1)]=(1+n)+(1+n)…+(1+n)=n/2 (1+n) =(n(1+n))/2当n为奇数数时, n-1为偶数

  • 人教版高中数学选择性必修二等比数列的前n项和公式 (1) 教学设计

    新知探究国际象棋起源于古代印度.相传国王要奖赏国际象棋的发明者,问他想要什么.发明者说:“请在棋盘的第1个格子里放上1颗麦粒,第2个格子里放上2颗麦粒,第3个格子里放上4颗麦粒,依次类推,每个格子里放的麦粒都是前一个格子里放的麦粒数的2倍,直到第64个格子.请给我足够的麦粒以实现上述要求.”国王觉得这个要求不高,就欣然同意了.假定千粒麦粒的质量为40克,据查,2016--2017年度世界年度小麦产量约为7.5亿吨,根据以上数据,判断国王是否能实现他的诺言.问题1:每个格子里放的麦粒数可以构成一个数列,请判断分析这个数列是否是等比数列?并写出这个等比数列的通项公式.是等比数列,首项是1,公比是2,共64项. 通项公式为〖a_n=2〗^(n-1)问题2:请将发明者的要求表述成数学问题.

  • 人教版高中数学选择性必修二等比数列的前n项和公式 (2) 教学设计

    二、典例解析例10. 如图,正方形ABCD 的边长为5cm ,取正方形ABCD 各边的中点E,F,G,H, 作第2个正方形 EFGH,然后再取正方形EFGH各边的中点I,J,K,L,作第3个正方形IJKL ,依此方法一直继续下去. (1) 求从正方形ABCD 开始,连续10个正方形的面积之和;(2) 如果这个作图过程可以一直继续下去,那么所有这些正方形的面积之和将趋近于多少?分析:可以利用数列表示各正方形的面积,根据条件可知,这是一个等比数列。解:设正方形的面积为a_1,后续各正方形的面积依次为a_2, a_(3, ) 〖…,a〗_n,…,则a_1=25,由于第k+1个正方形的顶点分别是第k个正方形各边的中点,所以a_(k+1)=〖1/2 a〗_k,因此{a_n},是以25为首项,1/2为公比的等比数列.设{a_n}的前项和为S_n(1)S_10=(25×[1-(1/2)^10 ] )/("1 " -1/2)=50×[1-(1/2)^10 ]=25575/512所以,前10个正方形的面积之和为25575/512cm^2.(2)当无限增大时,无限趋近于所有正方形的面积和

  • 人教版高中数学选择性必修二等差数列的前n项和公式(2)教学设计

    课前小测1.思考辨析(1)若Sn为等差数列{an}的前n项和,则数列Snn也是等差数列.( )(2)若a1>0,d<0,则等差数列中所有正项之和最大.( )(3)在等差数列中,Sn是其前n项和,则有S2n-1=(2n-1)an.( )[答案] (1)√ (2)√ (3)√2.在项数为2n+1的等差数列中,所有奇数项的和为165,所有偶数项的和为150,则n等于( )A.9 B.10 C.11 D.12B [∵S奇S偶=n+1n,∴165150=n+1n.∴n=10.故选B项.]3.等差数列{an}中,S2=4,S4=9,则S6=________.15 [由S2,S4-S2,S6-S4成等差数列得2(S4-S2)=S2+(S6-S4)解得S6=15.]4.已知数列{an}的通项公式是an=2n-48,则Sn取得最小值时,n为________.23或24 [由an≤0即2n-48≤0得n≤24.∴所有负项的和最小,即n=23或24.]二、典例解析例8.某校新建一个报告厅,要求容纳800个座位,报告厅共有20排座位,从第2排起后一排都比前一排多两个座位. 问第1排应安排多少个座位?分析:将第1排到第20排的座位数依次排成一列,构成数列{an} ,设数列{an} 的前n项和为S_n。

  • 北师大版初中数学九年级下册圆周角和圆心角的关系说课稿

    (设计意图:因为圆中有关的点、线、角及其他图形位置关系的复杂,学生往往因对已知条件的分析不够全面,忽视某个条件,某种特殊情况,导致漏解。采用小组讨论交流的方式进行要及时进行小组评价。)(3) 议一议( 如图,OA、OB、OC都是圆O的半径∠AOB=2∠BOC, 求证:∠ACB=2∠BAC。)(设计意图:通过练习,使学生能灵活运用圆周角定理进行几何题的证明,规范步骤,提高利用定理解决问题的能力。)(三)说小结首先,通过学生小组交流,谈一谈你有什么收获。(提示学生从三方面入手:1、学到了知识;2、掌握了哪些数学方法;3、体会到了哪些数学思想。)然后,教师引导小组间评价。使学生对本节内容有一个更系统、深刻的认识,实现从感性认识到理性认识的飞跃。(四)、板书设计为了集中浓缩和概括本课的教学内容,使教学重点醒目、突出、合理有序,以便学生对本课知识点有了完整清晰的印象。我只选择了本节课的两个知识点作为板书。

  • 北师大初中七年级数学下册三角形的内角和教案

    解:∵CE⊥AF,∴∠DEF=90°,∴∠EDF=90°-∠F=90°-40°=50°.由三角形的内角和定理得∠C+∠DBC+∠CDB=∠F+∠DEF+∠EDF,又∵∠CDB=∠EDF,∴30°+∠DBC=40°+90°,∴∠DBC=100°.方法总结:本题主要利用了“直角三角形两锐角互余”的性质和三角形的内角和定理,熟记性质并准确识图是解题的关键.三、板书设计1.三角形的内角和定理:三角形的内角和等于180°.2.三角形内角和定理的证明3.直角三角形的性质:直角三角形两锐角互余.本节课通过一段对话设置疑问,巧设悬念,激发起学生获取知识的求知欲,充分调动学生学习的积极性,使学生由被动接受知识转为主动学习,从而提高学习效率.然后让学生自主探究,在教学过程中充分发挥学生的主动性,让学生提出猜想.在教学中,教师通过必要的提示指明学生思考问题的方向,在学生提出验证三角形内角和的不同方法时,教师注意让学生上台演示自己的操作过程和说明自己的想法,这样有助于学生接受三角形的内角和是180°这一结论

  • 北师大初中八年级数学下册旋转的定义和性质教案

    (3)∵AD=4,DE=1,∴AE=42+12=17.∵对应点到旋转中心的距离相等且F是E的对应点,∴AF=AE=17.(4)∵∠EAF=90°(旋转角相等)且AF=AE,∴△EAF是等腰直角三角形.【类型二】 旋转的性质的运用如图,点E是正方形ABCD内一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置.若AE=1,BE=2,CE=3则∠BE′C=________度.解析:连接EE′,由旋转性质知BE=BE′,∠EBE′=90°,∴△BEE′为等腰直角三角形且∠EE′B=45°,EE′=22.在△EE′C中,EE′=22,E′C=1,EC=3,由勾股定理逆定理可知∠EE′C=90°,∴∠BE′C=∠BE′E+∠EE′C=135°.三、板书设计1.旋转的概念将一个图形绕一个顶点按照某个方向转动一个角度,这样的图形运动称为旋转.2.旋转的性质一个图形和它经过旋转所得的图形中,对应点到旋转中心的距离相等,任意一组对应点与旋转中心的连线所成的角都等于旋转角,对应线段相等,对应角相等.

  • 北师大初中九年级数学下册圆周角和圆心角的关系教案

    解析:点E是BC︵的中点,根据圆周角定理的推论可得∠BAE=∠CBE,可证得△BDE∽△ABE,然后由相似三角形的对应边成比例得结论.证明:∵点E是BC︵的中点,即BE︵=CE︵,∴∠BAE=∠CBE.∵∠E=∠E(公共角),∴△BDE∽△ABE,∴BE∶AE=DE∶BE,∴BE2=AE·DE.方法总结:圆周角定理的推论是和角有关系的定理,所以在圆中,解决相似三角形的问题常常考虑此定理.三、板书设计圆周角和圆心角的关系1.圆周角的概念2.圆周角定理3.圆周角定理的推论本节课的重点是圆周角与圆心角的关系,难点是应用所学知识灵活解题.在本节课的教学中,学生对圆周角的概念和“同弧所对的圆周角相等”这一性质较容易掌握,理解起来问题也不大,而对圆周角与圆心角的关系理解起来则相对困难,因此在教学过程中要着重引导学生对这一知识的探索与理解.还有些学生在应用知识解决问题的过程中往往会忽略同弧的问题,在教学过程中要对此予以足够的强调,借助多媒体加以突出.

  • 国旗下的讲话稿:你的一生如此漫长

    梦境和来世超越现实客观存在于人们的脑海里,前者让人们忘记现实的残酷与烦恼,后者让人们忽略此生的遗憾,期待转世的福音。可是,从人出生的那一刻起,到临终时闭上眼为止,这世上一遭,便匆匆走完,人的一生,注定无法来一个轮回。今天,我们同为怀揣梦想的高三学子,不久之后,我们就要迎接各自的未来。或许,六月之后,等待我们的是一张名牌大学通知节,或许,是自我的埋怨,也可能是就此踏入社会的无奈。记得初中要毕业的时候,班主任问过我一个问题,她说,“倘若给你两枚硬币,让整个世界从你眼前消失,你会怎样做?”答案其实很简单,用两枚硬币挡住眼睛,世界就像消失了一样。这个故事对我触动很大,我想起很多人,因为遮住了自己的双眼,走入无法自拔的泥淖。后果我明白,看不见世界的存在,只是因为封闭了自己的心。

  • 国旗下的讲话稿:生命中最重要的

    演讲稿频道《国旗下的讲话稿范文:生命中最重要的》,希望大家喜欢。大家好!许多人也许都曾经问过自己:什么是生命中最重要的东西?尽管给出的答案形形色色、不一而足,但是,每一种答案又都毫无疑问地代表着一种人生观或价值取向。而一旦一个人选择了某种答案,那么,这答案又将反过来深刻地影响着这个人漫长的一生。也许有的同学会问:“你的答案是什么呢?”是什么?这也正是我今天所要回答的问题。两年前,我曾经读过一则寓言,是讲有三个仙女飞临一座王宫时,看到了一个正在熟睡的可爱的小王子,他是老国王唯一的儿子,也是王位的继承人。一个仙女说:“这小王子太惹人爱怜了,我们姐妹三人,每人送他一件礼物吧。”于是,这个仙女首先送给王子礼物——健康,第二个仙女送给王子的礼物是智慧。第三个仙女说:“两位姐姐送给王子的礼物都很好,因为有了健康的身体,他就可以享受人生的财富和爱情,有了智慧,他就可以治理好他的国家。但是,我觉得我应该送给他一颗像鹰一样渴望高翔的心。

  • 电商和物流工作总结及下一步工作计划

    一、电商工作开展情况据省商务厅电商发展研究中心监测,今年1-8月,全市网络零售额实现81.2亿元,总量全省第五,同比增长17.98%。网络零售主体不断壮大,截止8月底全市有网络零售企业6901家,较今年1月份增加1109家。今年以来,我们主要围绕“四个聚焦”来推进落实。(一)聚集平台,积极争取工作支持。对接阿里巴巴方面,3月28日,联合天猫、1688平台在玉XX县举办“XX市雨具行业商家对接交流会”,组织了玉XX县、XX丰区(主要集聚地)30多家雨衣雨鞋套加工和电商销售企业参加,为企业与电商平台对接合作架接了“桥梁”。对接京东方面,3月23日-24日,联合京东、XX电商发展研究中心举办XX数字商务高质量发展暨XX市电商专题培训班,持续提升电商企业、电商创业群体线上营销及实操水平。4月28日,联合市农业农村局在京东平台设立并上线了“京东XX农特产馆”,这是继“京东·XX特产馆”之后上线的又一市级京东平台专馆。(二)聚集产业,培育打造电商产业带。一是真金白银扶持培育电商产业带。

  • 人教版高中政治必修1信用工具和外汇说课稿

    一、对教材内容的处理根据新课程标准的要求、知识的跨度、学生的认知水平,我对教材内容有增有减。二、教学策略的选用(一)运用了模拟活动,强化学生的生活体验,本框题知识所对应的经济现象,学生已具有了一定的生活体验,但是缺乏对这种体验的深入思考。因此在进一步强化这种体验的过程中进行了思考和认知,使知识从学生的生活体验中来,从学生的思考探究中来,有助于提高学生的兴趣,有助于充分调动学生现有的知识,培养学生的各种能力,也有助于实现理论知识与实际生活的交融。(二)组织学生探究知识并形成新的知识我从学生的生活体验入手,运用案例等形式创设情境呈现问题,使学生在自主探索、合作交流的过程中,发现问题、分析问题、解决问题,在问题的分析与解决中主动构建知识。也正是由于这些认识来自于学生自身的体验,因此学生不仅“懂”了,而且“信”了。从内心上认同这些观点,进而能够主动地内化为自己的情感、态度、价值观,并融入到实践活动中去,有助于实现知、行、信的统一。

  • 人教版高中政治必修1信用工具和外汇教案

    (3)人民币外汇牌价:我国通常采用100单位外币作为标准,折算为一定数量的人民币。如果用100单位外币可以兑换更多的人民币,说明外汇汇率升高;反之,则说明外汇汇率跌落。教师活动:大家知道汇率是经常变动的,为什么汇率经常变动?我国在美国、日本等国再三施加压力的情况下,为什么保持汇率稳定,人民币不升值?学生活动:学生就老师提出的问题去阅读教材;然后展开讨论,并回答(4)保持人民币币值稳定的意义教师点评:影响汇率变动的因素主要有:外汇的供求关系、通货膨胀(或紧缩)率的差异、经济增长率、利率水平、国家货币当局的干预与管制、市场预期、外汇投机活动等。外汇在国家经济发展和国际贸易中具有重要的作用:通过汇率的升降调节进出口贸易;可以影响国际资本的流动方向和数量;可以影响国内物价水平;影响外汇储备的实际价值等。

  • 大班社会教案:社会化认知:米饭和汉堡(大班)

    2、尝试用辩论的方式发展自己的见解,愿意倾听并接纳他人的意见。工具材料:课前幼儿调查了解中西餐的特点。活动设计:一、引出课题你吃过西餐吗?味道怎么样?你觉得中餐好还是西餐好?

  • 双方协议和平离婚协议书范例模板

    甲乙任何一方不得隐瞒、虚报、转移婚内共同财产或婚前财产。如任何一方  有隐瞒、虚报、转移、抽逃除上述个人婚前财产外,另一方发现后有权取得对方所隐瞒、虚报、转移的财产的全部份额,并追究其隐瞒、虚报、转移财产的法律责任,虚报、转移、隐瞒方无权分割该财产。

  • 转让技术秘密和补偿贸易合作生产合同

    第一条 技术名称、资料1.技术名称、权属: 2.“技术文件资料”的定义、范围及交付: (1)一般技术资料包括: (2)产品设计图纸: (3)生产技术资料: (4)资料的修改: (5)资料的提供方式: a.对一般技术文件应提供三份蓝图或同等数量的清晰的复制图;b.对产品设计图纸应提供一份生产底图及两份蓝图;c.对生产技术资料应提供两份蓝图;d.对已提供过的完全相同的重复资料,可免于提供,但需在清单中予以注明。(6)资料的交付进度: a.根据资料定义的规定,在签订合同后30天需交付合同产品的全部技术资料和图纸;b.根据资料定义的规定,在签订合同后于 年 月 日前需向 交付合同产品的全部技术资料和图纸。第二条 合作期限1.以补偿贸易进行使用生产期限为2年,2年后若合资经营条件不成熟,则可延长合作生产期限,但最长不得超过5年。

  • 区2023年度安全生产和消防工作总结

    五、2024年工作谋划工作目标:坚决杜绝较大及以上事故;坚决遏制一般事故,推动道交事故持续下降;坚决防范自然灾害导致人员伤亡;确保持续实现亡人事故和亡人数量双下降;确保全区安全生产形势持续稳定向好。(一)扎实推进重大事故隐患排查专项整治。结合安全生产翻身仗,紧盯高层建筑、居民自建房、城镇燃气、消防和人员密集场所、矿山、危险化学品、烟花爆竹、交通运输、建筑施工、特种设备、文化旅游、冶金工贸等重点行业领域,兼顾新业态新领域,聚焦可能导致群死群伤的非法违规行为、设施设备故障等重大事故隐患,全面排查整治各类安全隐患。(二)严格精准安全监管执法。按照“自查不罚、被查必罚、一案双罚”的要求,各负有安全监管职责部门全过程聚焦重大事故隐患和重点检查事项,聚焦第一责任人履职情况,扎实开展精准执法检查,切实做到“四个一律”(即:对非法生产经营建设和经停产整顿仍未达到要求的,一律依法关闭取缔;对非法违法生产经营建设的有关单位和责任人,一律按规定上限予以处罚;

  • 幼儿园大班社会教案:小铜人和小蜡人

    活动准备: 《幼儿用书》人手一册。   调查表《长处和短处》。  活动过程:  1、倾听故事《小铜人和小蜡人》,感知理解故事内容。   教师引导幼儿打开《幼儿用书》至故事《小铜人和小蜡人》。   教师带领幼儿边看图边倾听故事。   教师:故事里有谁?小铜人有什么优点?小蜡人有什么优点?   教师:小铜人和小蜡人有缺点吗?有什么缺点呢?   2、启发幼儿探索并讲述自己的长处。   教师:小朋友,你有优点吗?你的优点是什么?   鼓励幼儿在集体面前展示自己的优点和长处(例如:会讲故事、会跳舞、会弹琴)

上一页123...108109110111112113114115116117118119下一页
提供各类高质量Word文档下载,PPT模板下载,PPT背景图片下载,免费ppt模板下载,ppt特效动画,PPT模板免费下载,专注素材下载!