提供各类精美PPT模板下载
当前位置:首页 > Word文档 >

国际计算机软件许可合同格式

  • 人教版高中数学选择性必修二等差数列的前n项和公式(1)教学设计

    高斯(Gauss,1777-1855),德国数学家,近代数学的奠基者之一. 他在天文学、大地测量学、磁学、光学等领域都做出过杰出贡献. 问题1:为什么1+100=2+99=…=50+51呢?这是巧合吗?试从数列角度给出解释.高斯的算法:(1+100)+(2+99)+…+(50+51)= 101×50=5050高斯的算法实际上解决了求等差数列:1,2,3,…,n,"… " 前100项的和问题.等差数列中,下标和相等的两项和相等.设 an=n,则 a1=1,a2=2,a3=3,…如果数列{an} 是等差数列,p,q,s,t∈N*,且 p+q=s+t,则 ap+aq=as+at 可得:a_1+a_100=a_2+a_99=?=a_50+a_51问题2: 你能用上述方法计算1+2+3+… +101吗?问题3: 你能计算1+2+3+… +n吗?需要对项数的奇偶进行分类讨论.当n为偶数时, S_n=(1+n)+[(2+(n-1)]+?+[(n/2+(n/2-1)]=(1+n)+(1+n)…+(1+n)=n/2 (1+n) =(n(1+n))/2当n为奇数数时, n-1为偶数

  • 人教版高中数学选择性必修二等比数列的前n项和公式 (1) 教学设计

    新知探究国际象棋起源于古代印度.相传国王要奖赏国际象棋的发明者,问他想要什么.发明者说:“请在棋盘的第1个格子里放上1颗麦粒,第2个格子里放上2颗麦粒,第3个格子里放上4颗麦粒,依次类推,每个格子里放的麦粒都是前一个格子里放的麦粒数的2倍,直到第64个格子.请给我足够的麦粒以实现上述要求.”国王觉得这个要求不高,就欣然同意了.假定千粒麦粒的质量为40克,据查,2016--2017年度世界年度小麦产量约为7.5亿吨,根据以上数据,判断国王是否能实现他的诺言.问题1:每个格子里放的麦粒数可以构成一个数列,请判断分析这个数列是否是等比数列?并写出这个等比数列的通项公式.是等比数列,首项是1,公比是2,共64项. 通项公式为〖a_n=2〗^(n-1)问题2:请将发明者的要求表述成数学问题.

  • 人教版高中数学选择性必修二等比数列的前n项和公式 (2) 教学设计

    二、典例解析例10. 如图,正方形ABCD 的边长为5cm ,取正方形ABCD 各边的中点E,F,G,H, 作第2个正方形 EFGH,然后再取正方形EFGH各边的中点I,J,K,L,作第3个正方形IJKL ,依此方法一直继续下去. (1) 求从正方形ABCD 开始,连续10个正方形的面积之和;(2) 如果这个作图过程可以一直继续下去,那么所有这些正方形的面积之和将趋近于多少?分析:可以利用数列表示各正方形的面积,根据条件可知,这是一个等比数列。解:设正方形的面积为a_1,后续各正方形的面积依次为a_2, a_(3, ) 〖…,a〗_n,…,则a_1=25,由于第k+1个正方形的顶点分别是第k个正方形各边的中点,所以a_(k+1)=〖1/2 a〗_k,因此{a_n},是以25为首项,1/2为公比的等比数列.设{a_n}的前项和为S_n(1)S_10=(25×[1-(1/2)^10 ] )/("1 " -1/2)=50×[1-(1/2)^10 ]=25575/512所以,前10个正方形的面积之和为25575/512cm^2.(2)当无限增大时,无限趋近于所有正方形的面积和

  • 直线的点斜式方程教学设计人教A版高中数学选择性必修第一册

    【答案】B [由直线方程知直线斜率为3,令x=0可得在y轴上的截距为y=-3.故选B.]3.已知直线l1过点P(2,1)且与直线l2:y=x+1垂直,则l1的点斜式方程为________.【答案】y-1=-(x-2) [直线l2的斜率k2=1,故l1的斜率为-1,所以l1的点斜式方程为y-1=-(x-2).]4.已知两条直线y=ax-2和y=(2-a)x+1互相平行,则a=________. 【答案】1 [由题意得a=2-a,解得a=1.]5.无论k取何值,直线y-2=k(x+1)所过的定点是 . 【答案】(-1,2)6.直线l经过点P(3,4),它的倾斜角是直线y=3x+3的倾斜角的2倍,求直线l的点斜式方程.【答案】直线y=3x+3的斜率k=3,则其倾斜角α=60°,所以直线l的倾斜角为120°.以直线l的斜率为k′=tan 120°=-3.所以直线l的点斜式方程为y-4=-3(x-3).

  • 直线的两点式方程教学设计人教A版高中数学选择性必修第一册

    解析:①过原点时,直线方程为y=-34x.②直线不过原点时,可设其方程为xa+ya=1,∴4a+-3a=1,∴a=1.∴直线方程为x+y-1=0.所以这样的直线有2条,选B.答案:B4.若点P(3,m)在过点A(2,-1),B(-3,4)的直线上,则m= . 解析:由两点式方程得,过A,B两点的直线方程为(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又点P(3,m)在直线AB上,所以3+m-1=0,得m=-2.答案:-2 5.直线ax+by=1(ab≠0)与两坐标轴围成的三角形的面积是 . 解析:直线在两坐标轴上的截距分别为1/a 与 1/b,所以直线与坐标轴围成的三角形面积为1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三个顶点A(0,4),B(-2,6),C(-8,0).(1)求三角形三边所在直线的方程;(2)求AC边上的垂直平分线的方程.解析(1)直线AB的方程为y-46-4=x-0-2-0,整理得x+y-4=0;直线BC的方程为y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直线AC的方程为x-8+y4=1,整理得x-2y+8=0.(2)线段AC的中点为D(-4,2),直线AC的斜率为12,则AC边上的垂直平分线的斜率为-2,所以AC边的垂直平分线的方程为y-2=-2(x+4),整理得2x+y+6=0.

  • 直线的一般式方程教学设计人教A版高中数学选择性必修第一册

    解析:当a0时,直线ax-by=1在x轴上的截距1/a0,在y轴上的截距-1/a>0.只有B满足.故选B.答案:B 3.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:设所求直线方程为x-2y+c=0,把点(1,0)代入可求得c=-1.所以所求直线方程为x-2y-1=0.故选A.4.已知两条直线y=ax-2和3x-(a+2)y+1=0互相平行,则a=________.答案:1或-3 解析:依题意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直线.(1)求实数m的范围;(2)若该直线的斜率k=1,求实数m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直线,则m2-3m+2与m-2不能同时为0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.

  • 人教版高中数学选择性必修二等差数列的前n项和公式(2)教学设计

    课前小测1.思考辨析(1)若Sn为等差数列{an}的前n项和,则数列Snn也是等差数列.( )(2)若a1>0,d<0,则等差数列中所有正项之和最大.( )(3)在等差数列中,Sn是其前n项和,则有S2n-1=(2n-1)an.( )[答案] (1)√ (2)√ (3)√2.在项数为2n+1的等差数列中,所有奇数项的和为165,所有偶数项的和为150,则n等于( )A.9 B.10 C.11 D.12B [∵S奇S偶=n+1n,∴165150=n+1n.∴n=10.故选B项.]3.等差数列{an}中,S2=4,S4=9,则S6=________.15 [由S2,S4-S2,S6-S4成等差数列得2(S4-S2)=S2+(S6-S4)解得S6=15.]4.已知数列{an}的通项公式是an=2n-48,则Sn取得最小值时,n为________.23或24 [由an≤0即2n-48≤0得n≤24.∴所有负项的和最小,即n=23或24.]二、典例解析例8.某校新建一个报告厅,要求容纳800个座位,报告厅共有20排座位,从第2排起后一排都比前一排多两个座位. 问第1排应安排多少个座位?分析:将第1排到第20排的座位数依次排成一列,构成数列{an} ,设数列{an} 的前n项和为S_n。

  • 人教版高中数学选修3二项式系数的性质教学设计

    1.对称性与首末两端“等距离”的两个二项式系数相等,即C_n^m=C_n^(n"-" m).2.增减性与最大值 当k(n+1)/2时,C_n^k随k的增加而减小.当n是偶数时,中间的一项C_n^(n/2)取得最大值;当n是奇数时,中间的两项C_n^((n"-" 1)/2) 与C_n^((n+1)/2)相等,且同时取得最大值.探究2.已知(1+x)^n =C_n^0+C_n^1 x+...〖+C〗_n^k x^k+...+C_n^n x^n 3.各二项式系数的和C_n^0+C_n^1+C_n^2+…+C_n^n=2n.令x=1 得(1+1)^n=C_n^0+C_n^1 +...+C_n^n=2^n所以,(a+b)^n 的展开式的各二项式系数之和为2^n1. 在(a+b)8的展开式中,二项式系数最大的项为 ,在(a+b)9的展开式中,二项式系数最大的项为 . 解析:因为(a+b)8的展开式中有9项,所以中间一项的二项式系数最大,该项为C_8^4a4b4=70a4b4.因为(a+b)9的展开式中有10项,所以中间两项的二项式系数最大,这两项分别为C_9^4a5b4=126a5b4,C_9^5a4b5=126a4b5.答案:1.70a4b4 126a5b4与126a4b5 2. A=C_n^0+C_n^2+C_n^4+…与B=C_n^1+C_n^3+C_n^5+…的大小关系是( )A.A>B B.A=B C.A<B D.不确定 解析:∵(1+1)n=C_n^0+C_n^1+C_n^2+…+C_n^n=2n,(1-1)n=C_n^0-C_n^1+C_n^2-…+(-1)nC_n^n=0,∴C_n^0+C_n^2+C_n^4+…=C_n^1+C_n^3+C_n^5+…=2n-1,即A=B.答案:B

  • 小班认知《1和许多》说课稿

    认识“l”和“许多”是幼儿认识数活动的开始,比较适合于3岁左右的孩子。根据他们年龄小、好玩、好游戏、有意注意时间短的身心特点,我设计了认知活动“1”和“许多”。只学习“1”和“许多”相对低年龄段孩子而言较抽象和枯燥。但伴随着游戏活动,就会让幼儿在玩中学,在学中玩.既可以满足幼儿游戏和好动的需要,又能很好地完成数学教育目标。根据这一指导思想,我选择了“小兔采蘑菇”作为小班幼儿学习区别“1”和“许多”的教材,并帮助他们初步理解“l”和“许多”之间的关系。在整个教材中所涉及的动物形象“小白兔”,孩子们很熟悉,而且其中的活动简单。比较形象直观,满足幼儿思维具体形象的特性,让幼儿在游戏中建立初浅的数概念。

  • 《巧儿我自幼儿许配赵家》教案

    《巧儿我自幼儿许配赵家》这段曾经风靡全国的唱腔采用的是“喇叭牌子”。传统中这个曲牌用唢呐伴奏,唱词虚词衬字多,曲调简单粗糙。 初排《刘巧儿》时这段唱曾遭到非议,徐文华在几种板式都不理想的情况下,提议用这个曲牌,节奏跳跃灵活,但由于旧评剧中此调比较庸俗,所以要推陈出新。 经改革后的这段“小桥送线”,其前半段,伴奏乐器中去掉唢呐,改为弦乐,细腻传情;过门也变化得长短灵活;演唱时也去掉不必要的衬字;后半部有数板,半说半唱,用高低木鱼和三弦衬托;最后几句对桥下景色的描绘与人物此时的心境融合起来,传神传情。

  • 许昌市组织工作综述

    二是人才助力效能不断增强。“许昌英才计划”实施以来,引进了一大批高层次人才,落地了一大批创新创业项目,累计有40多人获得省级以上荣誉奖励,30多人承担省级以上科技攻关项目,100多人获得近400项专利授权,30多人参与起草制定包含国际标准在内的各类标准50多个。其中,河南万里交通科技集团股份有限公司通过“许昌英才计划”引进认定硕士研究生以上学历高层次人才14人,引进认定创新创业人才(团队)项目7个,引进长安大学冯忠绪教授团队,实施的“振动搅拌装备研发及产业化”项目为世界首创,成立的德通智能科技股份有限公司已成为振动搅拌行业领军企业,在振动搅拌设备细分领域国内市场占有率在95%以上。围绕人才振兴助推乡村振兴,选派156名专家人才挂任乡镇科技副职,选任413名市、县两级科技特派员下乡助农,开展种植、养殖、病害防治技术等各类培训1600次,累计培训农民7万余人,持续推动人才下沉、科技下乡;争取55名省派博士服务团成员到我市挂职服务,推动企事业单位与省内高校科研院所开展创新合作;深化与中国科学院人才的交流合作,柔性引进专家人才80余人,落地转化项目22个;深化实施校地人才共建工程,遴选98名专家人才互派交流,推动政产学研用协同创新。

  • 【高教版】中职数学基础模块上册:1.3《集合的运算》优秀教案

    集合的基本运算(1) 一、教学目标 1、 知识与技能 (1)理解并集和交集的含义,会求两个简单集合的交集与并集。 (2)能够使用Venn图表达两个集合的运算,体会直观图像对抽象概念理解的作用。 2、过程与方法 (1)进一步体会类比的作用 。 (2) 进一步树立数形结合的思想。 3、情感态度与价值观 集合作为一种数学语言,让学生体会数学符号化表示问题的简洁美。 二、教学重点与难点 教学重点:并集与交集的含义 。 教学难点:理解并集与交集的概念,符号之间的区别与联系。

  • 小学数学人教版四年级下册《小数加减法的混合运算》说课稿

    【设计意图】新课前让学生对小数加减和整数加减混合运算的关系进行猜想,既抓住了本课的重点,同时很自然地让学生去体会知识之间的联系。(二)创设情境,发现问题出示情境图,师:从图中你获得哪些信息?你能提出什么问题?然后学生提问(对于学生提出的每个问题,教师作出适当评论。) 教师板书:一共花了多少钱?【设计意图】以学生自主探索为主,让学生在探索过程中发现规律,培养学生的归纳概括能力。(三)合作探究,解决问题解决第一个问题:一共花了多少钱? 教师提出要求:用两种方法解答。小组讨论,讨论后学生尝试独立在练习本上完成。 教师巡视,个别指导。(5分钟)【设计意图】充分体现教为主导、学为主体的原则。(四)展示交流,内化提升1、待大部分学生完成后,请两名学生把自己的解答板演到黑板上。组织学生评价:(1)教师概括:这两种解答方法的意义不相同,第一种解法是用脱式计算。第二种解法是用竖式计算少。

  • 北师大版小学数学六年级上册《分数混合运算(二)》说课稿

    一、说教材1、教材内容:本节是新北师大版教材六年级数学上册第二单元第二课的内容。2、教材分析:本课是一节计算与解决问题相结合的课,是在学生学会分数混合运算的运算顺序基础上学习的,是对整数乘法运算定律的推广,也是在学生学会简单的“求一个数的几分之几是多少?”的分数乘法问题以及简单两步计算问题基础上,进一步学习的较复杂“求比一个数多(或少)几分之几的数是多少?”的分数乘法问题,是后续学习整、小、分数混合运算及其简便运算,学习复杂分数应用问题的基础。3、学情分析:本课是在学习完分数混合运算(一)之后学习,学生已经有一定的基础。4、学习目标:(1)、通过解决“成交量”的问题,呈现不同解题策略,理解“求比一个数多几分之一的数是多少?”这类问题的数量关系,并学会解决方法。(2)、通过画图正确理解题意,分析数量关系,尤其是帮助理解“1+1/5”的含义。进一步体会画图是一种分析问题、解决问题的重要策略。

  • 北师大版小学数学六年级上册《分数混合运算(三)》说课稿

    教材首先呈现了一个实际问题,并增加了一个估算的要求,让学生先估一估再计算。接着教材中通过线段图帮助学生理解题意,引导学生思考“比八月份节约了”是什么意思?在线段图中,隐含着题目中最基本的等量关系,然后引导学生根据等量关系列方程解答,最后验证估算的结果。在开展教学时,注意下面几个方面。一是估算意识的培养。结合具体情境发展学生的估算意识和能力是《新课程标准》中强调的,分数中的估算要比整数、小数的估算难把握一些,教学时,让学生结合问题情境进行估算,关键是让学生体会估算要有依据。二是解决问题策略的研究。教学时,可以让师生交流画图,试着分析数量间的关系。根据等量关系列出方程,解决问题。接着进行变式练习,把题目中的“比八月份节约了”改写成“比八月份增加了”,目的是让学生进一步利用知识解决相关数学问题,让学生再次利用图找出等量关系。三是注重对估算结果进行验证。

  • 北师大版小学数学六年级上册《分数混合运算(一)》说课稿

    二、教法根据教材呈现的内容,我在开展教学活动时是从以下几个方面思考。1、出示情境图,鼓励学生分析情境中的数学信息和数量关系,明确所要解决的问题,然后了解要解决这个问题需要什么样的条件,进而列出算式。2、讨论具体的计算方法。教材中呈现了两种计算方法。在这个过程中,教师可以先让学生自主进行计算,再组织讨论和交流算法之间的联系,明白分数混合运算的顺序。3、对问题的解决加以解释,即航模小组有3人。三、学法通过本节教学,学生学会运用直观的教学手段理解掌握新知识,学会有顺序的观察题、认真审题、正确计算、概括总结、检查的学习习惯。四、教学程序(一)谈话设计意图:激发学生兴趣,调动学生学习的积极性。(二)复习旧知1、复习整数混合运算的顺序。

  • 人教版新课标小学数学四年级下册小数加减混合运算说课稿

    习题三:我来解一解1. .四、五年级的学生采集树种,四年级的学生采集了19.4千克,五年级采集的比四年级多3.5千克,两个年级一共采集树种多少千克?2. 王老师买了两本参考书《小学数学学习指导书》和《数学手册》,其中《小学数学学习指导书》的定价是12.36元,而《数学手册》的定价比《小学数学学习指导书》贵4.25元,王老师给了售货员50元,应找回多少钱? [设计意图]:通过“变式练习、开放练习”考察学生对学习目标的达成情况。 这样设计练习题,主要体现了练习的针对性、层次性和由易到难的原则。既达到了教学目标,又发散了学生思维。(四)、归纳总结,提高认识:我用“通过本课的学习,你有哪些收获?”进行总结,然后学生交流,说说自己的收获。[设计意图]:充分体现教为主导、学为主体的原则。四、课堂检测:

  • 人教版新课标小学数学四年级下册小数四则混合运算顺序说课稿

    在学习本课内容以前,学生已经系统地学习了整数四则混合运算和小数四则计算,为本节课内容的学习打下了基础,四则混合运算的运算顺序同整数四则混合运算的运算顺序完全一样,针对这一点,本课教学确定的教学目的使学生掌握小数四则混合运算的运算顺序。培养学生观察、分析、比较的思维能力和语言表达能力。培养学生的迁移类推能力和认真严格的学习态度。养成认真的计算习惯,逐步提高学生的计算能力和技巧。使学生熟练地掌握小数四则混合运算的运算顺序,正确、迅速地进行小数四则混合式题的运算,是本课的教学重点。教学难点是:能否正确把握运算顺序。为了实现教学目的,更好地突出重点,突破难点,在教学中遵循大纲的要求,从学生的生活实际引入,让学生明白数学来自生活,从生活中提炼数学,产生我要学数学的情感。为了训练学生正确、合理、灵活的计算能力,在练习设计上力求形式多样。

  • 人教版新课标小学数学五年级下册分数加减混合运算说课稿2篇

    1、完成练习十五第1题。(1)学生独立完成计算。(2)指名板演,交流计算方法。提问:你是按照什么运算顺序计算的?指出:分数加减混合运算的运算顺序与整数相同,参与运算的几个分数,可以分步通分,分步计算;也可以一次通分,再计算。计算结果要约成最简分数。[练习十五里异分母分数加减混合运算的纯计算题比较少,仅第1题里有4道。教学中适当补充三个分数加减混合运算的练习也是可以的,但不要耗费学生过多的学习精力。如果学生计算发生错误,要仔细分析原因,有针对性地采取有效的解决措施。]2、完成练习十五第2题。(1)读题,理解题意,说说自己的思路。(2)学生独立完成解答。10(3)+ 5(1)+ 6(1)= 30(9)+ 30(6)+ 30(5)= 30(20)= 3(2)(小时)(3)交流汇报,集体评价。3、完成练习十五第3题。(1)学生独立完成(1)、(2)小题,说说自己是怎样想的?(2)鼓励学生根据题中的已知条件提出用分数加、减法计算的不同问题,可以是一步计算的,也可以是两步计算的,并让学生尝试解决提出的一些问题。

  • 人教版新课标小学数学六年级上册分数乘除混合运算说课稿

    仔细观察两位同学的算法,看看有什么不同之处?第一种是求解这道题的分步列式方法,第二种是列综合算式解答的算式。引导学生对比分步算式与综合算式,让学生体会乘除混合运算的顺序。组织学生讨论:分数乘除混合运算怎样计算?引导学生归纳:分数乘除混合运算中,遇到除以一个数时,只要乘以这个数的倒数,就可以把乘除混合运算转化为分数连乘,再按照分数连乘的方法进行计算。经过计算,你有什么经验要和同学们分享?想提醒大家注意什么?此处我尽量把解决问题的主动权交给学生,让他们进行讲解、讨论、对比、分析,再通过同伴间的互相交流,找到知识之间的内在联系。三、分层练习,巩固应用本课练习的设计以趣味性和层次性为原则,分别安排了“基础性练习”、“拓展性练习”和“趣味性练习”,检验学生的学习效果。1、基础性练习:做课本自主练习第3题,让学生自主完成,全班交流算法,目的是巩固算法,反馈学习效果。

上一页123...495051525354555657585960下一页
提供各类高质量Word文档下载,PPT模板下载,PPT背景图片下载,免费ppt模板下载,ppt特效动画,PPT模板免费下载,专注素材下载!