反思感悟用基底表示空间向量的解题策略1.空间中,任一向量都可以用一个基底表示,且只要基底确定,则表示形式是唯一的.2.用基底表示空间向量时,一般要结合图形,运用向量加法、减法的平行四边形法则、三角形法则,以及数乘向量的运算法则,逐步向基向量过渡,直至全部用基向量表示.3.在空间几何体中选择基底时,通常选取公共起点最集中的向量或关系最明确的向量作为基底,例如,在正方体、长方体、平行六面体、四面体中,一般选用从同一顶点出发的三条棱所对应的向量作为基底.例2.在棱长为2的正方体ABCD-A1B1C1D1中,E,F分别是DD1,BD的中点,点G在棱CD上,且CG=1/3 CD(1)证明:EF⊥B1C;(2)求EF与C1G所成角的余弦值.思路分析选择一个空间基底,将(EF) ?,(B_1 C) ?,(C_1 G) ?用基向量表示.(1)证明(EF) ?·(B_1 C) ?=0即可;(2)求(EF) ?与(C_1 G) ?夹角的余弦值即可.(1)证明:设(DA) ?=i,(DC) ?=j,(DD_1 ) ?=k,则{i,j,k}构成空间的一个正交基底.
4.已知△ABC三个顶点坐标A(-1,3),B(-3,0),C(1,2),求△ABC的面积S.【解析】由直线方程的两点式得直线BC的方程为 = ,即x-2y+3=0,由两点间距离公式得|BC|= ,点A到BC的距离为d,即为BC边上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面积为4.5.已知直线l经过点P(0,2),且A(1,1),B(-3,1)两点到直线l的距离相等,求直线l的方程.解:(方法一)∵点A(1,1)与B(-3,1)到y轴的距离不相等,∴直线l的斜率存在,设为k.又直线l在y轴上的截距为2,则直线l的方程为y=kx+2,即kx-y+2=0.由点A(1,1)与B(-3,1)到直线l的距离相等,∴直线l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)当直线l过线段AB的中点时,A,B两点到直线l的距离相等.∵AB的中点是(-1,1),又直线l过点P(0,2),∴直线l的方程是x-y+2=0.当直线l∥AB时,A,B两点到直线l的距离相等.∵直线AB的斜率为0,∴直线l的斜率为0,∴直线l的方程为y=2.综上所述,满足条件的直线l的方程是x-y+2=0或y=2.
一、情境导学在一条笔直的公路同侧有两个大型小区,现在计划在公路上某处建一个公交站点C,以方便居住在两个小区住户的出行.如何选址能使站点到两个小区的距离之和最小?二、探究新知问题1.在数轴上已知两点A、B,如何求A、B两点间的距离?提示:|AB|=|xA-xB|.问题2:在平面直角坐标系中能否利用数轴上两点间的距离求出任意两点间距离?探究.当x1≠x2,y1≠y2时,|P1P2|=?请简单说明理由.提示:可以,构造直角三角形利用勾股定理求解.答案:如图,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即两点P1(x1,y1),P2(x2,y2)间的距离|P1P2|=?x2-x1?2+?y2-y1?2.你还能用其它方法证明这个公式吗?2.两点间距离公式的理解(1)此公式与两点的先后顺序无关,也就是说公式也可写成|P1P2|=?x2-x1?2+?y2-y1?2.(2)当直线P1P2平行于x轴时,|P1P2|=|x2-x1|.当直线P1P2平行于y轴时,|P1P2|=|y2-y1|.
(2)l的倾斜角为90°,即l平行于y轴,所以m+1=2m,得m=1.延伸探究1 本例条件不变,试求直线l的倾斜角为锐角时实数m的取值范围.解:由题意知(m"-" 1"-" 1)/(m+1"-" 2m)>0,解得1<m<2.延伸探究2 若将本例中的“N(2m,1)”改为“N(3m,2m)”,其他条件不变,结果如何?解:(1)由题意知(m"-" 1"-" 2m)/(m+1"-" 3m)=1,解得m=2.(2)由题意知m+1=3m,解得m=1/2.直线斜率的计算方法(1)判断两点的横坐标是否相等,若相等,则直线的斜率不存在.(2)若两点的横坐标不相等,则可以用斜率公式k=(y_2 "-" y_1)/(x_2 "-" x_1 )(其中x1≠x2)进行计算.金题典例 光线从点A(2,1)射到y轴上的点Q,经y轴反射后过点B(4,3),试求点Q的坐标及入射光线的斜率.解:(方法1)设Q(0,y),则由题意得kQA=-kQB.∵kQA=(1"-" y)/2,kQB=(3"-" y)/4,∴(1"-" y)/2=-(3"-" y)/4.解得y=5/3,即点Q的坐标为 0,5/3 ,∴k入=kQA=(1"-" y)/2=-1/3.(方法2)设Q(0,y),如图,点B(4,3)关于y轴的对称点为B'(-4,3), kAB'=(1"-" 3)/(2+4)=-1/3,由题意得,A、Q、B'三点共线.从而入射光线的斜率为kAQ=kAB'=-1/3.所以,有(1"-" y)/2=(1"-" 3)/(2+4),解得y=5/3,点Q的坐标为(0,5/3).
一、情境导学前面我们已经得到了两点间的距离公式,点到直线的距离公式,关于平面上的距离问题,两条直线间的距离也是值得研究的。思考1:立定跳远测量的什么距离?A.两平行线的距离 B.点到直线的距离 C. 点到点的距离二、探究新知思考2:已知两条平行直线l_1,l_2的方程,如何求l_1 〖与l〗_2间的距离?根据两条平行直线间距离的含义,在直线l_1上取任一点P(x_0,y_0 ),,点P(x_0,y_0 )到直线l_2的距离就是直线l_1与直线l_2间的距离,这样求两条平行线间的距离就转化为求点到直线的距离。两条平行直线间的距离1. 定义:夹在两平行线间的__________的长.公垂线段2. 图示: 3. 求法:转化为点到直线的距离.1.原点到直线x+2y-5=0的距离是( )A.2 B.3 C.2 D.5D [d=|-5|12+22=5.选D.]
1.直线2x+y+8=0和直线x+y-1=0的交点坐标是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程组{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交点坐标是(-9,10).答案:B 2.直线2x+3y-k=0和直线x-ky+12=0的交点在x轴上,则k的值为( )A.-24 B.24 C.6 D.± 6解析:∵直线2x+3y-k=0和直线x-ky+12=0的交点在x轴上,可设交点坐标为(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故选A.答案:A 3.已知直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,若l1⊥l2,则点P的坐标为 . 解析:∵直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,联立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴点P的坐标为(3,3).答案:(3,3) 4.求证:不论m为何值,直线(m-1)x+(2m-1)y=m-5都通过一定点. 证明:将原方程按m的降幂排列,整理得(x+2y-1)m-(x+y-5)=0,此式对于m的任意实数值都成立,根据恒等式的要求,m的一次项系数与常数项均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤
(1)几何法它是利用图形的几何性质,如圆的性质等,直接求出圆的圆心和半径,代入圆的标准方程,从而得到圆的标准方程.(2)待定系数法由三个独立条件得到三个方程,解方程组以得到圆的标准方程中三个参数,从而确定圆的标准方程.它是求圆的方程最常用的方法,一般步骤是:①设——设所求圆的方程为(x-a)2+(y-b)2=r2;②列——由已知条件,建立关于a,b,r的方程组;③解——解方程组,求出a,b,r;④代——将a,b,r代入所设方程,得所求圆的方程.跟踪训练1.已知△ABC的三个顶点坐标分别为A(0,5),B(1,-2),C(-3,-4),求该三角形的外接圆的方程.[解] 法一:设所求圆的标准方程为(x-a)2+(y-b)2=r2.因为A(0,5),B(1,-2),C(-3,-4)都在圆上,所以它们的坐标都满足圆的标准方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圆的标准方程是(x+3)2+(y-1)2=25.
1.两圆x2+y2-1=0和x2+y2-4x+2y-4=0的位置关系是( )A.内切 B.相交 C.外切 D.外离解析:圆x2+y2-1=0表示以O1(0,0)点为圆心,以R1=1为半径的圆.圆x2+y2-4x+2y-4=0表示以O2(2,-1)点为圆心,以R2=3为半径的圆.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圆x2+y2-1=0和圆x2+y2-4x+2y-4=0相交.答案:B2.圆C1:x2+y2-12x-2y-13=0和圆C2:x2+y2+12x+16y-25=0的公共弦所在的直线方程是 . 解析:两圆的方程相减得公共弦所在的直线方程为4x+3y-2=0.答案:4x+3y-2=03.半径为6的圆与x轴相切,且与圆x2+(y-3)2=1内切,则此圆的方程为( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:设所求圆心坐标为(a,b),则|b|=6.由题意,得a2+(b-3)2=(6-1)2=25.若b=6,则a=±4;若b=-6,则a无解.故所求圆方程为(x±4)2+(y-6)2=36.答案:D4.若圆C1:x2+y2=4与圆C2:x2+y2-2ax+a2-1=0内切,则a等于 . 解析:圆C1的圆心C1(0,0),半径r1=2.圆C2可化为(x-a)2+y2=1,即圆心C2(a,0),半径r2=1,若两圆内切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知两个圆C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直线l:x+2y=0,求经过C1和C2的交点且和l相切的圆的方程.解:设所求圆的方程为x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圆心为 1/(1+λ),2/(1+λ) ,半径为1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圆x2+y2=4显然不符合题意,故所求圆的方程为x2+y2-x-2y=0.
【答案】B [由直线方程知直线斜率为3,令x=0可得在y轴上的截距为y=-3.故选B.]3.已知直线l1过点P(2,1)且与直线l2:y=x+1垂直,则l1的点斜式方程为________.【答案】y-1=-(x-2) [直线l2的斜率k2=1,故l1的斜率为-1,所以l1的点斜式方程为y-1=-(x-2).]4.已知两条直线y=ax-2和y=(2-a)x+1互相平行,则a=________. 【答案】1 [由题意得a=2-a,解得a=1.]5.无论k取何值,直线y-2=k(x+1)所过的定点是 . 【答案】(-1,2)6.直线l经过点P(3,4),它的倾斜角是直线y=3x+3的倾斜角的2倍,求直线l的点斜式方程.【答案】直线y=3x+3的斜率k=3,则其倾斜角α=60°,所以直线l的倾斜角为120°.以直线l的斜率为k′=tan 120°=-3.所以直线l的点斜式方程为y-4=-3(x-3).
切线方程的求法1.求过圆上一点P(x0,y0)的圆的切线方程:先求切点与圆心连线的斜率k,则由垂直关系,切线斜率为-1/k,由点斜式方程可求得切线方程.若k=0或斜率不存在,则由图形可直接得切线方程为y=b或x=a.2.求过圆外一点P(x0,y0)的圆的切线时,常用几何方法求解设切线方程为y-y0=k(x-x0),即kx-y-kx0+y0=0,由圆心到直线的距离等于半径,可求得k,进而切线方程即可求出.但要注意,此时的切线有两条,若求出的k值只有一个时,则另一条切线的斜率一定不存在,可通过数形结合求出.例3 求直线l:3x+y-6=0被圆C:x2+y2-2y-4=0截得的弦长.思路分析:解法一求出直线与圆的交点坐标,解法二利用弦长公式,解法三利用几何法作出直角三角形,三种解法都可求得弦长.解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交点A(1,3),B(2,0),故弦AB的长为|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.设两交点A,B的坐标分别为A(x1,y1),B(x2,y2),则由根与系数的关系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的长为√10.解法三圆C:x2+y2-2y-4=0可化为x2+(y-1)2=5,其圆心坐标(0,1),半径r=√5,点(0,1)到直线l的距离为d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦长为("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦长|AB|=√10.
解析:①过原点时,直线方程为y=-34x.②直线不过原点时,可设其方程为xa+ya=1,∴4a+-3a=1,∴a=1.∴直线方程为x+y-1=0.所以这样的直线有2条,选B.答案:B4.若点P(3,m)在过点A(2,-1),B(-3,4)的直线上,则m= . 解析:由两点式方程得,过A,B两点的直线方程为(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又点P(3,m)在直线AB上,所以3+m-1=0,得m=-2.答案:-2 5.直线ax+by=1(ab≠0)与两坐标轴围成的三角形的面积是 . 解析:直线在两坐标轴上的截距分别为1/a 与 1/b,所以直线与坐标轴围成的三角形面积为1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三个顶点A(0,4),B(-2,6),C(-8,0).(1)求三角形三边所在直线的方程;(2)求AC边上的垂直平分线的方程.解析(1)直线AB的方程为y-46-4=x-0-2-0,整理得x+y-4=0;直线BC的方程为y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直线AC的方程为x-8+y4=1,整理得x-2y+8=0.(2)线段AC的中点为D(-4,2),直线AC的斜率为12,则AC边上的垂直平分线的斜率为-2,所以AC边的垂直平分线的方程为y-2=-2(x+4),整理得2x+y+6=0.
1.确定研究对象,明确哪个是解释变量,哪个是响应变量;2.由经验确定非线性经验回归方程的模型;3.通过变换,将非线性经验回归模型转化为线性经验回归模型;4.按照公式计算经验回归方程中的参数,得到经验回归方程;5.消去新元,得到非线性经验回归方程;6.得出结果后分析残差图是否有异常 .跟踪训练1.一只药用昆虫的产卵数y与一定范围内的温度x有关,现收集了6组观测数据列于表中: 经计算得: 线性回归残差的平方和: ∑_(i=1)^6?〖(y_i-(y_i ) ?)〗^2=236,64,e^8.0605≈3167.其中 分别为观测数据中的温度和产卵数,i=1,2,3,4,5,6.(1)若用线性回归模型拟合,求y关于x的回归方程 (精确到0.1);(2)若用非线性回归模型拟合,求得y关于x回归方程为 且相关指数R2=0.9522. ①试与(1)中的线性回归模型相比较,用R2说明哪种模型的拟合效果更好 ?②用拟合效果好的模型预测温度为35℃时该种药用昆虫的产卵数.(结果取整数).
老师们、同学们:大家上午好!今天我国旗下讲话的主题是“践行文明礼仪新风尚,争做开朗明亮清开人”。同学们,我们的祖国素有“礼仪之邦”的美誉,我们青少年,作为传统美德的传承者,推动社会文明发展,是我们应尽的职责。文明无小事,事事需文明。一直以来,我们提倡同学们做文明的中学生,我们号召全体师生从小事做起,从一言一行做起。仍然记得同学们为弘扬文明礼仪所策划的班级活动:有的同学曾经拿着小铲子,去除校园里的口香糖污渍,他们趴着、甚至跪在地上,誓要将那一个个小牛皮癣清除干净;有的同学自发地在校园里进行宣传,号召同学们在横幅上签字,约束自我,鼓励自我成为一个文明人;有的同学利用课余时间,去图书馆帮助老师整理图书,去体育器材室整理器材;有的同学拿着砂纸,在教学楼逐层清理墙上留下的污渍;有的同学在吃完饭后,帮助食堂阿姨整理餐盘;有的同学不怕脏、不怕累,去打扫厕所,维持卫生……的确,这样的自我提醒,自我约束,使得文明的种子悄悄地驻扎在我们的心田,同学们的行动感染着身边的每一个人, 如今的你,当看到地上有废纸张、垃圾时,你会选择捡起来,扔到垃圾桶里;当见到老师或外校的来访者时,你会有礼貌地说声“老师好”;当在食堂面对餐盘中的剩饭剩菜时,你会想着珍惜粮食、尽力吃完;当在马路口等待通行时,你会遵守“红灯停、绿灯行“的交通规则。没错,这便是文明的力量,是我们每个人身上的正能量!
各位老师、同学们好!今天是3月26日,再过3天就是3月29日,是育才双语学校xx—xx学年度第二学期首次质量调查考试。也许这份答卷是为告别3月份画的圆满句号。也许就是这份答卷,你可以骄傲的说,4月我依然最棒,谁能说今日的考试不是选拔精英,因为我们的学校就是输送人才的摇篮,谁能说今天的考试不是塑造良才,因为我们的学校就是为每一个学生的发展成材而教育,考分对我们每个人都很重要,它是平日起早贪晚的反映,是认真听课认真作业的评价,是对老师辛勤教导的回报,是对家长殷殷关切的报答,所以每道题你们都要仔细看,认真审,耐心的思考,清晰的表达。因为,多一分就可能及格,多一分就可能提高十个名次,多一分你的班级就可能成为赢家,而少一分可能就不是100,少一分可能就不是第一。
各位老师、同学:大家早上好!今天,我给大家演讲的题目是《培养良好习惯,争做合格学生》。法国学者培根曾经说过:“习惯是人生的主宰,人们应该努力地追求好习惯。”的确,行为习惯就像我们身上的指南针,指引着每一个人的行动。纵观历史,大凡获得成功的人,都是一些良好行为长期坚持,养成习惯。如鲁迅先生,他在小时候就养成不迟到的习惯,要求自己抓紧时间,时时刻刻叮嘱自己凡事都要早做,这位以“小跑走完一生”的作家,在中国文学史上留下了辉煌的业绩。可见,行为习惯对一个人各方面的素质起了决定性的作用,这对我们小学生来讲,尤为重要。就拿与我们密切相关的学习来说吧,有些同学上课不专心听讲,不踊跃发言,有些同学双休日总把是一些作业拖到星期日晚上才去完成等等。其实,这完全是学习习惯和方法的问题。大家都知道,一个好的学习习惯和方法,能使我们既学得有效率,又学得轻松自在。如果带着不良的学习习惯,不但不能提高学习效率,而且对身心发展也会造成不利的影响。因此,我们在学习时,最重要的是养成一个良好的学习习惯,“好习惯,益终身”。这样一来,就能取得事半功倍的效果。
各位老师,各位同学,大家上午好:今天是“3·15”国际消费者权益日。所以我演讲的题目是“诚信·维权,我的责任”。前几年中国大地上流行着这样一首歌,歌中写到:“雾里看花,水中望月,你能分辨这变幻莫测的世界。”词作者阎肃曾经披露说,那英唱的这首歌是送给“3·15”的,希望消费者能够借助一双慧眼,将这经济生活中的纷扰看得清清楚楚、明明白白、真真切切!而今天正是所有消费者扬眉吐气的日子!十几年来,“3·15”从一个国外漂泊来的普通纪念日,已经演变为中国消费大众维权的一个节日、一面旗帜。每年春天的这个时候,她都会再一次增强我们的信念和勇气,让诚信和理性的光芒照耀每一位经营者、消费者的心灵。 早在1962年3月15日,美国总统肯尼迪就提出了消费者的四项权利,到了1983年,这一天就被定为了国际消费者权益日,1991年“3·15”来到了中国,1994年,我国的《消费者权益保护法》出台。而今年恰逢《消费者权益保护法》诞生十周年,中国消费者协会也迎来了她二十岁的生日。在这样一个有特殊纪念意义的日子里,中国消费者协会确定今年的“3·15”主题为“诚信·维权”。
尊敬的老师们,亲爱的同学们,大家早上好!我是来自高XX级9班的xx,今天我演讲的题目是《读书》。暖暖的阳光温柔地洒落,泡一壶香茗,在丝丝缕缕的清新中轻轻的让书面舒展,轻抚上面的文字,让一个个跳动的音韵把我导向各处的思许之地,一种难以名状的舒坦就在我的心中飘散开来。“读书就好比隐身‘串门’”,杨绛如是说。阅读的确让我走到了不少人的家中。我与岳飞握着双手,一同喊出了“壮志饥餐胡虏肉,笑谈渴饮匈奴血”的豪言壮语。我轻拍着伤痛欲绝的柳永,和他一起走过了“杨柳岸晓风残月”。才在西域边塞见识了葡萄美酒夜光杯,又在青旗之下笑沽梨花酒。我与五湖四海的友人畅谈心声,共同举杯欢笑。渐渐的,我醉倒在了诗词山水之中,开始慢慢地与书化为而一,正是沉醉不知归路。既是不知归,也就不必归去,在阅读里进行一番探险,别有一番风味。
第一篇:-厉行勤俭,从我做起同学们、老师们:大家好!今天我演讲的题目是“厉行勤俭,从我做起”。不知大家是否知道,10月31日是世界勤俭日。或许在这个物质文化飞速发展的时代,在这个迈向繁荣昌盛的社会,勤俭早已不是艰苦朴素的代名词,但这是否就意味着没有必要勤俭、可以随意挥霍浪费资源呢?我们从小学会的第一首诗可能就是“谁知盘中餐,粒粒皆辛苦”,小时候,我们可能会将碗里的米饭认真地吃得一粒不剩,但如今我们这些衣食无忧的青少年,真的做到了勤俭节约吗?食堂的泔脚桶里,满满的尽是我们随意倒掉的饭菜;课后的小卖部里,挤满了挥霍零花钱大手大脚买“垃圾食品”的身影;更令人不解和痛心的是,我们当中还存在着一面伸手向国家和社会领取补助,一面却与他人攀比着mp3、mp4品牌的人!这就是我们信口拈来高呼着的“勤俭节约”吗?我们生活在物质发达、福利充分的上海,但我们是否知道,中国现在地区发展不平衡还很明显,社会上还有很多人吃不饱、穿不暖,祖国虽然地大物博,但在十几亿人口的重压下,各种资源都稀少短缺。我们又有什么理由去恣意挥霍、随意浪费呢!
同学们,春光无限好,行动趁此时。三月里,学校大队部也将组织一系列活动。希望同学们积极地投入到这些有意义的活动中来。在活动中受到教育,得到锻炼,使自己真正成长为一个有益于社会的人。如下是小编给大家整理的国旗下讲话稿范本,希望对大家有所作用。国旗下讲话稿范本篇【一】 尊敬的各位老师、亲爱的同学们:大家早上好!今天我讲话的主题是“懂得感恩”。我想问问大家:你知道“感恩节”吗?可能许多同学略知一二,并不是太清楚。这也难怪,感恩节是北美的清教徒为了庆祝丰收以及感谢印第安人和上帝对他们的恩赐,始于1621年的一个节日。1863年,美国总统林肯将它定为国家假日,并且规定每年11月的第四个星期四为美国的感恩节。感恩节有四天假期。借着长假,很多人都会赶回家同父母一道庆祝佳节,在美国感恩节的热闹程度绝不亚于我国的中秋节。也许有的同学要问:“外国的洋节日跟我们有什么关系呢?”在这里我要强调的是“感恩”一词对我们的重要意义,而并不是崇洋媚 外的盲目追从。
情商重要还是智商重要?敬爱的老师、亲爱的同学们:大家好!我是42班刘子麟,很感谢老师给予我这次在国旗下演讲的机会。我和大家一起交流《情商重要还是智商重要?》我在新闻报道中曾看到过这样一则消息:xxxx爷爷来到高校和毕业生座谈时,谈到一个问题 “情商重要还是智商重要?”主席说:“学习、工作中情商很重要,高情商能增强解决问题的能力,也能增强适应时代发展的能力。”我对“情商”这个名词似懂非懂,就去请教妈妈。妈妈并没有直接告诉我什么叫“情商”,却先和我讲了个小学生自杀的事件,“如果我死了,就怪某某老师,请警察叔叔把他抓走。”这句触目惊心的话是安徽省的两个六年级女生服毒自杀时留下的,顿时在社会上引起轰动,于是各种各样对教师的负面评价不绝于耳。我却不得不为我们的老师叫屈!难道学生自身就没有问题吗?遇到烦恼不是可以先和老师或家长交流沟通吗?意志如此薄弱,经不起困难和挫折的打击,其实是她们在与人沟通方面出现了极大的问题,这归根结底就是现在的学生太缺乏情商教育。