提供各类精美PPT模板下载
当前位置:首页 > Word文档 >

LOGO设计委托书

  • 两条平行线间的距离教学设计人教A版高中数学选择性必修第一册

    一、情境导学前面我们已经得到了两点间的距离公式,点到直线的距离公式,关于平面上的距离问题,两条直线间的距离也是值得研究的。思考1:立定跳远测量的什么距离?A.两平行线的距离 B.点到直线的距离 C. 点到点的距离二、探究新知思考2:已知两条平行直线l_1,l_2的方程,如何求l_1 〖与l〗_2间的距离?根据两条平行直线间距离的含义,在直线l_1上取任一点P(x_0,y_0 ),,点P(x_0,y_0 )到直线l_2的距离就是直线l_1与直线l_2间的距离,这样求两条平行线间的距离就转化为求点到直线的距离。两条平行直线间的距离1. 定义:夹在两平行线间的__________的长.公垂线段2. 图示: 3. 求法:转化为点到直线的距离.1.原点到直线x+2y-5=0的距离是( )A.2 B.3 C.2 D.5D [d=|-5|12+22=5.选D.]

  • 两直线的交点坐标教学设计人教A版高中数学选择性必修第一册

    1.直线2x+y+8=0和直线x+y-1=0的交点坐标是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程组{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交点坐标是(-9,10).答案:B 2.直线2x+3y-k=0和直线x-ky+12=0的交点在x轴上,则k的值为( )A.-24 B.24 C.6 D.± 6解析:∵直线2x+3y-k=0和直线x-ky+12=0的交点在x轴上,可设交点坐标为(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故选A.答案:A 3.已知直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,若l1⊥l2,则点P的坐标为 . 解析:∵直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,联立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴点P的坐标为(3,3).答案:(3,3) 4.求证:不论m为何值,直线(m-1)x+(2m-1)y=m-5都通过一定点. 证明:将原方程按m的降幂排列,整理得(x+2y-1)m-(x+y-5)=0,此式对于m的任意实数值都成立,根据恒等式的要求,m的一次项系数与常数项均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤

  • 圆的标准方程教学设计人教A版高中数学选择性必修第一册

    (1)几何法它是利用图形的几何性质,如圆的性质等,直接求出圆的圆心和半径,代入圆的标准方程,从而得到圆的标准方程.(2)待定系数法由三个独立条件得到三个方程,解方程组以得到圆的标准方程中三个参数,从而确定圆的标准方程.它是求圆的方程最常用的方法,一般步骤是:①设——设所求圆的方程为(x-a)2+(y-b)2=r2;②列——由已知条件,建立关于a,b,r的方程组;③解——解方程组,求出a,b,r;④代——将a,b,r代入所设方程,得所求圆的方程.跟踪训练1.已知△ABC的三个顶点坐标分别为A(0,5),B(1,-2),C(-3,-4),求该三角形的外接圆的方程.[解] 法一:设所求圆的标准方程为(x-a)2+(y-b)2=r2.因为A(0,5),B(1,-2),C(-3,-4)都在圆上,所以它们的坐标都满足圆的标准方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圆的标准方程是(x+3)2+(y-1)2=25.

  • 圆的一般方程教学设计人教A版高中数学选择性必修第一册

    情境导学前面我们已讨论了圆的标准方程为(x-a)2+(y-b)2=r2,现将其展开可得:x2+y2-2ax-2bx+a2+b2-r2=0.可见,任何一个圆的方程都可以变形x2+y2+Dx+Ey+F=0的形式.请大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲线是不是圆?下面我们来探讨这一方面的问题.探究新知例如,对于方程x^2+y^2-2x-4y+6=0,对其进行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因为任意一点的坐标 (x,y) 都不满足这个方程,所以这个方程不表示任何图形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通过恒等变换为圆的标准方程,这表明形如x2+y2+Dx+Ey+F=0的方程不一定是圆的方程.一、圆的一般方程(1)当D2+E2-4F>0时,方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)为圆心,1/2 √(D^2+E^2 "-" 4F)为半径的圆,将方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)当D2+E2-4F=0时,方程x2+y2+Dx+Ey+F=0,表示一个点(-D/2,-E/2)(3)当D2+E2-4F0);

  • 圆与圆的位置关系教学设计人教A版高中数学选择性必修第一册

    1.两圆x2+y2-1=0和x2+y2-4x+2y-4=0的位置关系是( )A.内切 B.相交 C.外切 D.外离解析:圆x2+y2-1=0表示以O1(0,0)点为圆心,以R1=1为半径的圆.圆x2+y2-4x+2y-4=0表示以O2(2,-1)点为圆心,以R2=3为半径的圆.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圆x2+y2-1=0和圆x2+y2-4x+2y-4=0相交.答案:B2.圆C1:x2+y2-12x-2y-13=0和圆C2:x2+y2+12x+16y-25=0的公共弦所在的直线方程是 . 解析:两圆的方程相减得公共弦所在的直线方程为4x+3y-2=0.答案:4x+3y-2=03.半径为6的圆与x轴相切,且与圆x2+(y-3)2=1内切,则此圆的方程为( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:设所求圆心坐标为(a,b),则|b|=6.由题意,得a2+(b-3)2=(6-1)2=25.若b=6,则a=±4;若b=-6,则a无解.故所求圆方程为(x±4)2+(y-6)2=36.答案:D4.若圆C1:x2+y2=4与圆C2:x2+y2-2ax+a2-1=0内切,则a等于 . 解析:圆C1的圆心C1(0,0),半径r1=2.圆C2可化为(x-a)2+y2=1,即圆心C2(a,0),半径r2=1,若两圆内切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知两个圆C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直线l:x+2y=0,求经过C1和C2的交点且和l相切的圆的方程.解:设所求圆的方程为x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圆心为 1/(1+λ),2/(1+λ) ,半径为1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圆x2+y2=4显然不符合题意,故所求圆的方程为x2+y2-x-2y=0.

  • 直线的点斜式方程教学设计人教A版高中数学选择性必修第一册

    【答案】B [由直线方程知直线斜率为3,令x=0可得在y轴上的截距为y=-3.故选B.]3.已知直线l1过点P(2,1)且与直线l2:y=x+1垂直,则l1的点斜式方程为________.【答案】y-1=-(x-2) [直线l2的斜率k2=1,故l1的斜率为-1,所以l1的点斜式方程为y-1=-(x-2).]4.已知两条直线y=ax-2和y=(2-a)x+1互相平行,则a=________. 【答案】1 [由题意得a=2-a,解得a=1.]5.无论k取何值,直线y-2=k(x+1)所过的定点是 . 【答案】(-1,2)6.直线l经过点P(3,4),它的倾斜角是直线y=3x+3的倾斜角的2倍,求直线l的点斜式方程.【答案】直线y=3x+3的斜率k=3,则其倾斜角α=60°,所以直线l的倾斜角为120°.以直线l的斜率为k′=tan 120°=-3.所以直线l的点斜式方程为y-4=-3(x-3).

  • 直线与圆的位置关系教学设计人教A版高中数学选择性必修第一册

    切线方程的求法1.求过圆上一点P(x0,y0)的圆的切线方程:先求切点与圆心连线的斜率k,则由垂直关系,切线斜率为-1/k,由点斜式方程可求得切线方程.若k=0或斜率不存在,则由图形可直接得切线方程为y=b或x=a.2.求过圆外一点P(x0,y0)的圆的切线时,常用几何方法求解设切线方程为y-y0=k(x-x0),即kx-y-kx0+y0=0,由圆心到直线的距离等于半径,可求得k,进而切线方程即可求出.但要注意,此时的切线有两条,若求出的k值只有一个时,则另一条切线的斜率一定不存在,可通过数形结合求出.例3 求直线l:3x+y-6=0被圆C:x2+y2-2y-4=0截得的弦长.思路分析:解法一求出直线与圆的交点坐标,解法二利用弦长公式,解法三利用几何法作出直角三角形,三种解法都可求得弦长.解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交点A(1,3),B(2,0),故弦AB的长为|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.设两交点A,B的坐标分别为A(x1,y1),B(x2,y2),则由根与系数的关系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的长为√10.解法三圆C:x2+y2-2y-4=0可化为x2+(y-1)2=5,其圆心坐标(0,1),半径r=√5,点(0,1)到直线l的距离为d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦长为("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦长|AB|=√10.

  • 直线的两点式方程教学设计人教A版高中数学选择性必修第一册

    解析:①过原点时,直线方程为y=-34x.②直线不过原点时,可设其方程为xa+ya=1,∴4a+-3a=1,∴a=1.∴直线方程为x+y-1=0.所以这样的直线有2条,选B.答案:B4.若点P(3,m)在过点A(2,-1),B(-3,4)的直线上,则m= . 解析:由两点式方程得,过A,B两点的直线方程为(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又点P(3,m)在直线AB上,所以3+m-1=0,得m=-2.答案:-2 5.直线ax+by=1(ab≠0)与两坐标轴围成的三角形的面积是 . 解析:直线在两坐标轴上的截距分别为1/a 与 1/b,所以直线与坐标轴围成的三角形面积为1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三个顶点A(0,4),B(-2,6),C(-8,0).(1)求三角形三边所在直线的方程;(2)求AC边上的垂直平分线的方程.解析(1)直线AB的方程为y-46-4=x-0-2-0,整理得x+y-4=0;直线BC的方程为y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直线AC的方程为x-8+y4=1,整理得x-2y+8=0.(2)线段AC的中点为D(-4,2),直线AC的斜率为12,则AC边上的垂直平分线的斜率为-2,所以AC边的垂直平分线的方程为y-2=-2(x+4),整理得2x+y+6=0.

  • 直线的一般式方程教学设计人教A版高中数学选择性必修第一册

    解析:当a0时,直线ax-by=1在x轴上的截距1/a0,在y轴上的截距-1/a>0.只有B满足.故选B.答案:B 3.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:设所求直线方程为x-2y+c=0,把点(1,0)代入可求得c=-1.所以所求直线方程为x-2y-1=0.故选A.4.已知两条直线y=ax-2和3x-(a+2)y+1=0互相平行,则a=________.答案:1或-3 解析:依题意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直线.(1)求实数m的范围;(2)若该直线的斜率k=1,求实数m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直线,则m2-3m+2与m-2不能同时为0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.

  • 北师大版初中七年级数学下册利用轴对称进行设计说课稿

    一、教材分析轴对称是现实生活中广泛存在的一种现象,本章内容定位于生活中轴对称现象的分析,全章内容按照“直观认识——探索性质——简单图形——图案设计”这一主线展开,而这节课作为全章的最后一节,主要作用是将本章内容进行回顾和深化,使学生通过折叠、剪纸等一系列活动对生活中的轴对称现象由“直观感受”逐渐过渡到从“数学的角度去理解”,最后通过图案设计再将“数学运用到生活中”。轴对称是我们探索一些图形的性质,认识、描述图形形状和位置关系的重要手段之一。在后面的学习中,还将涉及用坐标的方法对轴对称刻画,这将进一步深化我们对轴对称的认识,也为“空间与图形”后继内容的学习打下基础。二、学情分析学生之前已经认识了轴对称现象,通过扎纸探索了轴对称的性质,并在对简单的轴对称图形的认识过程中加深了对轴对称的理解,但是对生活中的轴对称现象仍然以“直观感受”为主。

  • 2023年法治建设工作总结和2024年工作计划汇编(6篇)

    四是严格落实公平竞争审查制度。建立健全公平竞争审查机制,印发了《xx经济和信息化局公平竞争审查制度实施方案(试行)》,进一步明确了各科室审查责任和审查内容,坚决不允许出现影响企业公平竞争的限制性措施。今年,共审查规范性文件x件,均未出现影响公平竞争的相关措施。加强对妨碍统一市场、不正当竞争等问题整治,全面落实市场准入负面清单制度。五是持续提升监管效能。全面推行监管执法“一目录,五清单”制度,积极配合州交通局开展“双随机一公开”工作,加强机动车违规改装的监管工作。(三)健全体系,全面推进政府治理规范化程序化法治化一是加强规范性文件清理。全面落实规范性文件合法性审查制度,制定单位规范性文件备案审查程序,未经合法性审查或审查不合法的,不予审议印发。及时制定《州经信局关于开展州政府规章、行政规范性文件清理工作方案》,明确了清理范围、清理标准、方法和责任主体,全面清理了20xx年x月x日至2022年xx月xx日以x府发、x府函、x府办发、x府办函、x府规、x府办规等x种字号印发的州政府文件,共清理非涉密文件xx件,经合法性审核、集体审议,建议废止x件、失效xx件、拟修改x件,继续有效xx件。

  • 区公共工程建设中心2023年工作总结及2024年工作计划

    (四)持续激发片区活力,开创新局面。一是进一步坚持目标导向。结合片区特色亮点,紧扣片区定位和重大项目布局,聚力攻坚片区主导方向,全力配合片区搞好基础设施建设。二是进一步压实工作责任。立足重点片区工作实际,全面梳理“四考”(新增项目、新增入库、土地出让、集中开工)“三单”(基础设施建设清单、产业项目帮扶清单、招商引资项目清单),进一步完善考评细则,以年终绩效考核为抓手压实目标责任,以考核见真章,以考核促实效,充分激发十大重点片区比学赶超、奋勇争先的干劲。三是进一步强化协调调度。坚持目标导向与问题导向相统一,主动跟踪服务,对重点片区道路建设、招商引资、土地出让、流程审批、控规修编等方面存在的问题,分层级有序调度,逐个项目研究、逐个问题破解,稳步推进,推动项目早落地、早开工、早投产、早入库、早增效。志之所趋,无远弗届;志之所向,无坚不入。站在新的起点上,我们将保持发展定力,增强自身能力,坚定凝心聚力谋发展的决心不动摇,乘势而上开新局,砥砺奋进开新篇,为全面建设全国一流现代化强区,奋力谱写中国式现代化的我区篇章贡献更大公建力量。

  • 委员发言大会讲话

    紧扣经济建设中心。×、×、×三位委员,分别就推进民营经济创新发展、加快产业转型升级、优化营商环境等方面作了很好发言;×委员围绕乡村振兴主题,提出了“推动能人回乡创业项目落地”的合理建言;×委员围绕×跨江合作战略,提出了“区域一体、同城发展”的中肯意见。这些委员的发言,聚焦高质量发展的主题,聚焦“三化三区”发展战略,充分体现了政协委员服务中心的大局意识和政治担当。

  • 妇联执委调研报告3篇

    一是帮助农村妇女提高素质,促进农村经济的发展。坚持发展第一要务,努力提高妇女素质,不断深化以“学文化、学技术、比成绩、比贡献”为主题的“双学双比”活动,着力培育有文化、懂技术、会经营的新型女农民,注重“巾帼科技致富示范基地”建设,通过现场示范、基地培训、科技接力等形式,为农村妇女的生产发展、科技致富提供了有效服务。  二是扶持农村妇女增收致富,实现贫困地区农村富余女劳动力的就业。

  • 学校工会委员会工作制度

    二、认真贯彻执行学校教职工代表大会的决议及上级工会的决定,负责主持学校工会的日常工作。  三、制定学校工会的各项工作计划,各种会议的组织实施及各类学习的安排,并做到有布置、有检查、有落实、有总结。  四、围绕学校教育教学、建设,组织教职工开展劳动竞赛、合理化建议、教育改革和教育创新活动。

  • 区卫生健康委2023年工作总结

    (五)统筹做好其他重点工作。一是做好医药领域腐败问题集中整治工作。及时动员部署,做好政策宣传,建立工作专班,明确负面清单,设置廉政账户,全面开展自查自纠,认真查办问题线索。二是持续推进乡村振兴工作。巢湖市县域结对帮扶资金拨付我委80万元,用于村卫生室标准化建设提升、配备中医药设备和制氧机设备。同期开展3次讲座、4次义诊、6次培训。三是做好信访维稳和行业法治建设。受理信访件56件,已办结49件,7件办理中。开展“法润乡村社区”“江淮普法行”“美好生活·民法典相伴”进乡村、进社区、进单位、进医院和平安建设、扫黑除恶、禁毒、反恐等宣传义诊活动20余场次,发放各类宣传资料15000多份,惠及群众XX多人次。四是加大监督执法力度。今年以来,共立案查处各类违法案件125件,罚没款金额XX万元。打击非法行医21起,没收零散药品器械40箱,暂停1名医务人员执业活动一年,不良执业记分181份。在2022年3月-6月市依法行政办开展的年度行政执法评议考核工作中,区卫生健康委在考核中获得优秀等次。

  • 市卫生健康委2023年工作总结

    一、高点定位,筑牢公共卫生屏障1.完善体系建设,强化应急指挥能力。先后出台《关于进一步加强县域公共卫生应急管理体系建设实施意见的通知》《关于进一步建立健全村(居)公共卫生委员会运行机制意见(试行)的通知》《XX市突发公共卫生事件应急预案(2023年版)》等,进一步健全卫生应急管理体系。积极构建平战结合、医防协同、联防联控新型工作机制,实体化运行村(居)公共卫生委员会,推动所有公立医院设置公共卫生科,与市疾控中心形成紧密有效的防治结合体系;XX市应急医院已正式开诊,配备16排CT、呼吸机和PCR实验室等设施,有效增强突发公共卫生事件应急救治和防控能力。2.强化重点监测,提升传染性疾病防治水平。高标准推进血吸虫病、艾滋病、结核病、病毒性肝炎等传染病防治工作,各项指标均能达标。扩大医疗机构及羁押人群检测、老年人体检HIV抗体范围,初筛发现抗体阳性53例,确证阳性31例,成功转介治疗24例。常态化开展新冠病毒感染、流感样病例和肺炎支原体监测,对就诊人次显著增加的时段,增配备门急诊诊室、导医及安保人员,确保就诊运行安全有序。

  • 团委五年工作总结

    四是聚焦创先争优,实施示范带动。*区税务局团委不断完善工作机制,强化工作力度,紧密结合实际,认真履行引领凝聚青年、组织动员青年、联系服务青年职责。成为*税务系统唯一被命名*—*年度*市“青少年维权岗”的单位,第一税务分局曾获*-*年度*市青年文明号,区局团委获得*年度“*市五四红旗团(工)委”荣誉称号,第一团支部荣获*年度“*市五四红旗团(总)支部”荣誉称号,*名同志荣获“*省优秀共青团员”,*名同志分别荣获“*市优秀共青团干部”“*市优秀共青团员”荣誉称号。团员青年团结合作、积极参与,在*长三角阅读马拉松大赛(*赛区)获得团体一等奖;在全省“举旗帜·送理论”微宣讲竞赛中我局选手代表*市荣获二等奖;在全市“微团课”大赛中我局选手获得了二等奖;在全区“学习二十大青年走在前”演讲比赛中我局选手获得三等奖。

  • 村委会个人工作总结范文

    一是成立组织。成立了村环保组织和文明劝导队,力争通过宣传教育与先进示范相结合,通过专业环境保洁队伍与志愿者队伍相结合,共同做好环境整治工作。 二是完成环境整治配套工程。 完成东小路下水道整修、九所厕所维修和三格式改造、完成周塘路绿地的美化与运动器材的安装、完成路边绿地与小花坛的砌筑修整,提高环境质量。 三是开展庭院整治工作。投入一定的人力和资金进行环境整治,建立了长效管理机制,在环卫所常年保洁的基础上,聘请3名同志长期做好对环卫所服务范围外的绿化区块、卫生死角、房前屋后的清洁工作。今年我村又一次高标准地通过了市通过市庭院整治复评。 第四方面,综治工作情况: 综治工作与村庄环境整治工作一样,事关老百姓的切身利益,是历届村班子的工作重心之一。我们力争给老百姓创造一个和谐、稳定、安居乐业的生活环境。7月份,根据原村老年活动室与综治室场地狭小的实际,我们把综治室搬迁到东周塘老村,使综治室面积扩大到了200平方米,现正在派出所、街道综治办的领导下,开展平安基层基础规范化建设、示范综治工作室、平安社区的创建。

  • 离婚协议书

    3、债务的处理:双方确认婚姻关系存续期间的共同债务,至2005年-2012年所有债务由男方负担偿还。2012-2017年,男方在这其间的个人债务由男方自己承担,与女方无任何关系。五年中男方没有履行过任何家庭经济及抚养、教育婚生子的义务,女方因没有工作及经济来源,生活经济困难为抚养婚生子,所因经商而产生的所有银行贷款,男方自愿给予女方人民币50000元(伍万元),作为偿还帮助,于离婚当日 日以现金形式支付给女方。

上一页123...242526272829303132333435下一页
提供各类高质量Word文档下载,PPT模板下载,PPT背景图片下载,免费ppt模板下载,ppt特效动画,PPT模板免费下载,专注素材下载!